Publications by authors named "Shu-fang Zheng"

Ethylene plays a crucial role in regulating fruit ripening, quality, and defense response. However, the mechanism(s) responsible for wound-induced ethylene regulation of fruit physiology at a network level is unclear. We used mass spectrometry (MS) to identify differences in the physiological response between fresh-cut fruits of wild-type (WT) tomato and an ethylene receptor mutant (SlETR-3) (also referred to as Nr) during storage.

View Article and Find Full Text PDF

Hydrogen sulfide (HS), an endogenous gasotransmitter, plays an important role in apoptosis. Exudative diathesis (ED) disease is associated with dietary selenium (Se) deficiency in broilers. The liver is one of the target organs of Se deficiency; however, little is known about the effect of HS on apoptosis via mitochondrial pathways in the livers of broilers with ED disease.

View Article and Find Full Text PDF

Cadmium (Cd) is a toxic heavy metal that can induce apoptosis. Selenium (Se) is a necessary trace element and can antagonize the toxicity of many heavy metals, including Cd. PI3K/AKT/Bcl-2 is a key survival signaling pathway that regulates cellular defense system against oxidative injury as well as cell proliferation, survival, and apoptosis.

View Article and Find Full Text PDF

The direct functionalization of C-H bonds has drawn the attention of chemists for almost a century. C-H activation has mainly been achieved through four metal-mediated pathways: oxidative addition, electrophilic substitution, σ-bond metathesis and metal-associated carbene/nitrene/oxo insertion. However, the identification of methods that do not require transition-metal catalysts is important because methods involving such catalysts are often expensive.

View Article and Find Full Text PDF

Ethylene has been regarded as a stress hormone involved in many stress responses. However, ethylene receptors have not been studied for the roles they played under salt stress condition. Previously, we characterized an ethylene receptor gene NTHK1 from tobacco, and found that NTHK1 is salt-inducible.

View Article and Find Full Text PDF