Publications by authors named "Shu-Yun Kuo"

A dynamic data correction method embedded in the process of data acquisition improves spectral quality. The method minimizes the impact of random errors in spectroscopic measurements by correcting peak positions in every single-scan spectrum. The method is fast enough to facilitate online data correction.

View Article and Find Full Text PDF

Sample preparation is a critical process in mass spectrometry (MS) analysis of carbohydrates. Although matrix-assisted laser desorption/ionization (MALDI) MS is the method of choice in carbohydrate analysis, poor ion signal and data reproducibility of carbohydrate samples continue to be severe problems. For quantitative analysis of carbohydrates, an effective analytical protocol providing superior data quality is necessary.

View Article and Find Full Text PDF

Carbohydrate analysis is challenging due to lack of sensitive detection and efficient separation methods. Although matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a sensitive tool, the low ionization efficiency of carbohydrates makes mass analyses inefficient. This work systematically examines the correlation between MALDI-MS sensitivity and carbohydrate sample morphology.

View Article and Find Full Text PDF

Male sexual desire typically declines with ageing. However, our understanding of the neurobiological basis for this phenomenon is limited by our knowledge of the brain circuitry and neuronal pathways controlling male sexual desire. A number of studies across species suggest that dopamine (DA) affects sexual desire.

View Article and Find Full Text PDF

Dengue virus (DV) infections cause mild dengue fever (DF) or severe life-threatening dengue hemorrhagic fever (DHF). The mechanisms that cause hemorrhage in DV infections remain poorly understood. Thrombomodulin (TM) is a glycoprotein expressed on the surface of vascular endothelial cells that plays an important role in the thrombin-mediated activation of protein C.

View Article and Find Full Text PDF

The GAL4/UAS gene expression system is a precise means of targeted gene expression employed to study biological phenomena in Drosophila. A modified GAL4/UAS system can be conditionally regulated using a temporal and regional gene expression targeting (TARGET) system that responds to heat shock induction. However heat shock-related temperature shifts sometimes cause unexpected physiological responses that confound behavioral analyses.

View Article and Find Full Text PDF