Publications by authors named "Shu-You Li"

Lymphoma is one of the most curable types of cancer. However, drug resistance is the main challenge faced in lymphoma treatment. Peroxisomal acyl-CoA oxidase 1 (ACOX1) is the rate-limiting enzyme in fatty acid β-oxidation.

View Article and Find Full Text PDF

Background: Lymphoma is one of the most common hematologic malignancy. Drug resistance is the main obstacle faced in lymphoma treatment. Cancer stem cells are considered as the source of tumor recurrence, metastasis and drug resistance.

View Article and Find Full Text PDF

Atomically dispersed Fe/N/C composite was synthesized and its role in controlling the oxygen evolution reaction during Li-O(2) battery charging was studied by use of a tetra(ethylene glycol) dimethyl ether-based electrolyte. Li-O(2) cells using Fe/N/C as the cathode catalyst showed lower overpotentials than α-MnO(2)/carbon catalyst and carbon-only material. Gases evolved during the charge step contained only oxygen for Fe/N/C cathode catalyst, whereas CO(2) was also detected in the case of α-MnO(2)/C or carbon-only material; this CO(2) was presumably generated from electrolyte decomposition.

View Article and Find Full Text PDF

A broad array of water-insoluble compounds has displayed therapeutically relevant properties toward a spectrum of medical and physiological disorders, including cancer and inflammation. However, the continued search for scalable, facile, and biocompatible routes toward mediating the dispersal of these compounds in water has limited their widespread application in medicine. Here we demonstrate a platform approach of water-dispersible, nanodiamond cluster-mediated interactions with several therapeutics to enhance their suspension in water with preserved functionality, thereby enabling novel treatment paradigms that were previously unrealized.

View Article and Find Full Text PDF

High-yield synthesis of TiO(2) one-dimensional (1D) nanostructures was realized by a simple annealing of Ni-coated Ti grids in an argon atmosphere at 950 degrees C and 760 torr. The as-synthesized 1D nanostructures were single crystalline rutile TiO(2) with the preferred growth direction close to [210]. The growth of these nanostructures was enhanced by using catalytic materials, higher reaction temperature, and longer reaction time.

View Article and Find Full Text PDF

Herein, we described a new dip-pen nanolithography (DPN)-based method for the direct patterning of organic/inorganic composite nanostructures on silicon and oxidized silicon substrates. The approach works by the hydrolysis of metal precursors in the meniscus between an AFM tip and a surface according to the reaction 2MCln + nH2O --> M2On + 2nHCl; M = Al, Si, and Sn. The inks are hybrid composites of inorganic salts with amphiphilic block copolymer surfactants.

View Article and Find Full Text PDF