While biophysical stimuli from polymeric matrices are known to significantly affect the fates of human mesenchymal stem cells (hMSCs), the stimulatory effects of nano-sized silicon-based matrices on hMSCs have not been thoroughly investigated. We previously demonstrated that vertically aligned, single-crystalline silicon nanowires (SiNWs) can control the osteogenicity of hMSCs via controllable spring constants from SiNWs matrix. However, other possible differentiation fates of hMSCs on SiNWs have not been explored.
View Article and Find Full Text PDFHuman mesenchymal stem cells (hMSCs) can differentiate into osteoblasts and are regulated by chemical cues. The recombinant N-terminal (1-34 amino acids) fragment of the parathyroid hormone (PTH (1-34)) is identified to promote osteogenesis. The osteoanabolic effects of intermittent PTH (1-34) treatment are linked to a complex consisting of signaling pathways; additionally, protein kinase C (PKC) act as mediators of multifunctional signaling transduction pathways, but the role of PKC δ (PKCδ), a downstream target in regulating osteoblast differentiation during intermittent administration of PTH (1-34) is less studied and still remains elusive.
View Article and Find Full Text PDFLineage commitment and differentiation of mesenchymal stromal cells (MSCs) into osteoblasts in vitro is enhanced by a potent synthetic form of glucocorticoid (GC), dexamethasone (Dex). Paradoxically, when used chronically in patients, GCs exert negative effects on bone, a phenomenon known as glucocorticoid-induced osteoporosis in clinical practice. The mechanism on how GC differentially affects bone precursor cells to become mature osteoblasts during osteogenesis remains elusive.
View Article and Find Full Text PDFExtracellular stimuli imposed on stem cells enable efficient initiation of mechanotransductive signaling to regulate stem cell fates; however, how such physical cues conferred by the stereo-topographical matrix govern the fate of stem cells still remains unknown. The purpose of this study is to delineate the effects of stereotopography and its various relevant physical properties on the fate regulation of human mesenchymal stem cells (hMSCs). Stereo-topographical silicon nanowires (SiNWs) that were precisely controlled with respect to their various dimensions and their growth orientation were used in this study.
View Article and Find Full Text PDFPurpose: To examine retinal function after the long-term, gene therapy-delivered expression of exogenous glial cell line-derived neurotrophic factor (GDNF).
Methods: Forty Sprague-Dawley rats each received an intravitreal injection of recombinant adeno-associated virus expressing GDNF (rAAV-GDNF) in their right eye. The left eye was untreated.
Non-infectious human papillomavirus-like particles (VLPs), encoded by the major capsid gene L1, have been shown to be effective as vaccines to prevent cervical cancer. We have developed the genetic immunization of the L1 gene to induce a neutralizing antibody. We constructed and generated a recombinant adeno-associated virus encoding human papillomavirus (HPV) 16 L1 protein that could form virus-like particles in transduced cells.
View Article and Find Full Text PDFPurpose: To examine the protective effects of glial cell line-derived neurotrophic factor (GDNF) on retinal ischemia-reperfusion injury by using gene delivery.
Methods: Gene delivery to retinal cells was achieved through intravitreal injections of recombinant adeno-associated virus expressing GDNF (rAAV-GDNF) in the right eyes and AAV expressing Escherichia coli LacZ (rAAV-LacZ) in the left eyes of Sprague-Dawley rats. Ischemic injury was introduced three weeks after gene delivery.
A high-molecular-weight mite allergen Der f11 that was hardly purified for immunotherapy was used to develop the DNA vaccine pDf11. We have shown that vaccination of mice with pDf11 induces Th1 responses characterized by suppression of IgE responses. In the present study, effects of different adjuvants on pDf11 were first studied.
View Article and Find Full Text PDFIn this study, we injected recombinant adeno-associated virus (rAAV) vectors expressing the interleukin-1 receptor antagonist (rAAV-IL-1ra) into the cortex of rats experiencing transient cerebral ischemia. An accumulation of IL-1ra in cortical tissues of rAAV-IL-1ra-injected animals was confirmed by ELISA. Triphenyltetrazolium chloride (TTC) staining of viable brain tissue revealed that the rAAV-delivered IL-1ra gene could rescue the brain tissues from ischemia-induced injury.
View Article and Find Full Text PDFPurpose: To examine the protective effect of glial cell line-derived neurotrophic factor (GDNF) on retinal detachment (RD)-induced photoreceptor damage by using gene delivery.
Methods: Gene delivery to photoreceptors was achieved by subretinal injection of recombinant adeno-associated virus expressing GDNF (rAAV-GDNF) in the right eyes and AAV expressing Escherichia coli LacZ (rAAV-LacZ) in the left eyes of Lewis rats. RD in bilateral eyes was induced with subretinal injection of high-density vitreous substitute in the temporal retina 3 weeks after gene delivery.
DNA vaccines encoding low-molecular-weight allergens have been used to prevent IgE responses. A high-molecular-weight mite allergen Der f 11 that was hardly to be purified for immunotherapy was used to develop a DNA vaccine here. Vaccination of mice with plasmid DNA encoding Df11 (pDf11) induced Th1 responses characterized by IgG2a responses and spleen cell secretion of IFN-gamma.
View Article and Find Full Text PDF