Introduction: Intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels are associated with vascular homeostasis and diseases. Exercise can modulate ROS and NO production through increasing frequency and magnitude of wall shear stress (WSS). However, the details of ROS and NO production in endothelial cells and their interplay under WSS induced by exercise at different intensities remain unclear.
View Article and Find Full Text PDFBackground: In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery.
Methods: The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound.
Aging process is a key factor influencing the availability and toxicity of heavy metals in soil. However, the aging of chromium (Cr) in soils and its influence factors are still unclear, as a result of complexity of soils in China. This study was conducted to investigate the aging process of Cr(Ill) in 22 typical soils of China by using 0.
View Article and Find Full Text PDFObjective: To observe the therapeutic effects of acupuncture at Neiguan (PC 6) on silent myocardial ischemia (SMI).
Methods: Forty patients with SMI were randomly divided into an electroacupuncture group and a medicine group, 20 cases in each group. The Electroacupuncture group was treated with electroacupuncture and Neiguan (PC 6) was selected as the main acupoint, and the other acupoints were selected by syndrome differentiation.
Based on the previous Letter [Opt. Lett. 29, 2345 (2004)], we significantly extend the applications of the improved first Rayleigh-Sommerfeld method (IRSM1) to analyze the focusing performance of cylindrical micro-lenses for different types of profile (continuous or stepwise), different f-numbers (from f/1.
View Article and Find Full Text PDFAn improved first Rayleigh-Sommerfeld method (IRSM1) is proposed and applied to the analysis of cylindrical microlenses with small f-numbers. Numerical results obtained by both the IRSM1 and the original Rayleigh-Sommerfeld method (ORSM1) are compared with those obtained by the rigorous boundary element method (BEM). For both refractive and diffractive lenses, the results obtained by the IRSM1 are close to those obtained by the BEM even for small f-numbers; by contrast, the results by the ORSM1 differ significantly from those obtained by the BEM.
View Article and Find Full Text PDFWe investigated the focal characteristics of open-regional cylindrical microlens arrays with long focal depth by using a rigorous boundary-element method (BEM) and three scalar methods, i.e., a Kirchhoff and two Rayleigh-Sommerfeld diffraction integral forms.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
October 2002
We find that a microcylindrical axilens with a closed boundary and with an f-number less than 1 still can achieve the properties of long focal depth and high transverse resolution, unlike a microcylindrical axilens with an open boundary, which fails to maintain those properties for low f-numbers. The focusing characteristics of the closed-boundary axilens and the open-boundary axilens are numerically investigated based on the boundary integral method. The numerical results show that the ratio of the extended focal depth of the closed-boundary axilens to the focal depth of the conventional microlens can reach up to 1.
View Article and Find Full Text PDF