The mixed lineage kinase MLK3 plays a crucial role in compromising mitochondrial integrity and functions as a proapoptotic competence factor in the early stages of cytokine-induced pancreatic β cell death. In an effort to identify mechanisms that regulate MLK3 activity in β cells, we discovered that IL-1β stimulates Lys-63-linked ubiquitination of MLK3 via a conserved, TRAF6-binding peptapeptide motif in the catalytic domain of the kinase. TRAF6-mediated ubiquitination was required for dissociation of inactive monomeric MLK3 from the scaffold protein IB1/JIP1, facilitating the subsequent dimerization, autophosphorylation, and catalytic activation of MLK3.
View Article and Find Full Text PDFMixed lineage kinases (MLKs) have been implicated in cytokine signaling as well as in cell death pathways. Our studies show that MLK3 is activated in leukocyte-infiltrated islets of non-obese diabetic mice and that MLK3 activation compromises mitochondrial integrity and induces apoptosis of beta cells. Using an ex vivo model of islet-splenocyte co-culture, we show that MLK3 mediates its effects via the pseudokinase TRB3, a mammalian homolog of Drosophila Tribbles.
View Article and Find Full Text PDF