Publications by authors named "Shu-Lin Cong"

In this paper, we investigate the Feshbach resonances of high partial waves and the influence of spin-spin (S-S) interaction on ultracold scattering processes. Taking the Na23- Rb87 system as an example, we plot the variations of weakly bound state energy and elastic scattering cross section with magnetic field and with collision energy. We find that the number of splittings in high partial wave Feshbach resonances does not strictly conform to the expected l + 1 (l is rotational angular momentum), and the deviation is attributed to the influence of bound states in other channels coupled by S-S interaction.

View Article and Find Full Text PDF

We explore the influence of molecular alignment and orientation in the ground and excited states on the ionization probability, photoelectron angular distribution (PAD), energy-resolved photoelectron energy spectrum (PES) and two-dimensional momentum spectrum in the resonance-enhanced multiphoton ionization (REMPI) process. The calculated results for the LiH molecule show that molecular pre-alignment and -orientation have different effects on molecular photoionization. The ionization probability and energy-resolved photoelectron spectrum are associated with molecular pre-alignment.

View Article and Find Full Text PDF

A Feshbach optimized photoassociation (FOPA) process for preparing ultracold excited-state KCs molecules is studied theoretically. Under the joint action of the magnetic field and short laser pulse, the colliding atoms in a superposition state composed of eight hyperfine components are converted into a molecule in the vibrational level of the excited state via two transition processes, the transition between singlet states and the transition between triplet states. The association efficiency can be significantly enhanced by taking advantage of Feshbach resonance.

View Article and Find Full Text PDF

We investigate the modulating action of an external electric field on the magnetically tuned Feshbach resonance in ultracold heteronuclear atomic collision by using the multichannel quantum-defect theory (MQDT). The coupling between different partial wave states induced by an electric field is included into the singlet and triplet quantum defect matrices y and y. By taking the truncated -C/R - C/R - C/R potential as the reference potential, the threshold behaviors of four quantum-defect parameters for the lowest three partial waves are described.

View Article and Find Full Text PDF

We study theoretically the photoionization dynamics of pre-oriented NaK molecule. Firstly, a THz laser pulse is utilized to orient the ground state molecule. And then the pump and probe laser pulses are used to excite and ionize the molecule, respectively.

View Article and Find Full Text PDF

We derive a high-rank separable potential formula of the atom-atom interaction by using the two-body wave function in the coordinate space as inputs. This high-rank separable potential can be utilized to numerically solve the two-body Lippmann-Schwinger equation and three-body Faddeev equation. By analyzing the convenience and stability of numerical calculations for different kinds of the matrix forms of the Lippmann-Schwinger and Faddeev equations, we can find the optimal forms of the kernal matrices in the two- and three-body scattering equations.

View Article and Find Full Text PDF

We present a theoretical model for investigating the magnetically tuned Feshbach resonance (MTFR) of alkali metal atoms using the separable potential method (SPM). We discuss the relationship and difference between the SPM and the asymptotic bound state model. To demonstrate the validity of the SPM, we use it to calculate the weakly bound state energy and magnetically tuned scattering length for the Li-K, Li, and Li systems with narrow and broad Feshbach resonances.

View Article and Find Full Text PDF

The photophysical properties and photochemistry reactions of 2-(2-Hydroxy-phenyl)-4(3H)-quinazolinone (HPQ) system in different solutions are studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. Our theoretical investigation explores that an ultrafast barrier-free excited state intramolecular proton transfer (ESIPT) process occurs and the configuration twisting is found in the electronic excited state. In the polar protic methanol solution, the hydrogen-bonded complex composed by HPQ and two methanol molecules (HPQ-2M) could exist stably in the ground state.

View Article and Find Full Text PDF

The atom-atom-ion three-body recombination (TBR) of mixed He and X (X = H or D) systems is investigated by solving the Schrödinger equation using the adiabatic hyperspherical representation method. It is shown that the dominant products after a TBR in the ultracold limit (E ≤ 0.1 mK × k) are different for the two systems.

View Article and Find Full Text PDF

The role of sharp avoided crossings (SACs) in a short hyper-radial range R≤ 50 a.u. in the calculation of recombination for a cold He system is investigated in the adiabatic hyperspherical representation by "turning off and on" the relevant nonadiabatic couplings.

View Article and Find Full Text PDF

The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X(1)Σ(+)) is associated into the molecule in the bound states of the excited state (A(1)Σ(+)) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state.

View Article and Find Full Text PDF

The orientation and predissociation dynamics of the NaI molecule are studied by using a time-dependent wavepacket method. The NaI molecule is first pre-oriented by a single-cycle pulse (SCP) in terahertz (THz) region and then predissociated by a femtosecond pump pulse. The influence of the molecular field-free orientation on the predissociation dynamics is studied in detail.

View Article and Find Full Text PDF

We show that optimally shaped laser pulses can beneficially influence charge transfer in slow H(+)+D collisions. Time-dependent wave packet optimal control simulations are performed based on a two-state adiabatic Hamiltonian. Optimal control is performed using either an adaptive or a fixed target to obtain the desired laser control field.

View Article and Find Full Text PDF

The excited state hydrogen bonding dynamics and corresponding photophysical processes of fast violet B (FVB) in hydrogen-donating methanol (MeOH) solution are investigated by using time-dependent density functional theory (TDDFT) method. In the FVB molecule, there are -C=O, -N-H groups which could act as hydrogen acceptor and donor. It is demonstrated that both the intramolecular hydrogen bond O⋯H-N in FVB and intermolecular hydrogen bond C=O⋯H-O between FVB and MeOH are formed in the ground state S0 and strengthened in the excited state S1.

View Article and Find Full Text PDF

The field-free orientation induced by a single-cycle terahertz (THz) laser pulse is studied for two "heavy" molecules, NaI and IBr. Two methods are used and compared in the calculations: One is to solve the exact time-dependent Schrödinger equation (ETDSE) considering the full-rovibrational degrees of freedom, and the other is to invoke the rigid-rotor approximation (RRA). Calculations are performed for the central frequency varying from 0.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores Aminopyrazine (AP) and its complexes with methanol using advanced computational methods, focusing on how they behave in different energy states.
  • In the ground state, AP forms multiple hydrogen bonds with protic solvents, while in the excited state, these hydrogen bonds strengthen, affecting the molecule's interactions.
  • The research finds that upon excitation, AP and its complexes transition through various energy states, influencing their photochemical processes and absorption spectra.
View Article and Find Full Text PDF

The multi-photon dissociation of HCl(+) through three channels HCl(+)→H(1s|(2)S)+Cl(+)((3)P), H(+)+Cl((2)P(0)), and H((2)S)+Cl(+)((1)D) steered by intense femtosecond laser pulses are investigated theoretically using the quantum wave packet dynamics. The numerical calculations are performed in two cases without and with the coupling between the excited states. The results show that the dissociation is sensitive to the duration τ, peak intensity I(0), and the resonance of driving laser fields.

View Article and Find Full Text PDF

We demonstrate theoretically an efficient field-free orientation in LiH and LiCl driven by available terahertz few-cycle pulses (TFCPs). Exact results by numerically solving the time-dependent Schrodinger equation including the vibrational and rotational degrees of freedom are compared to the rigid-rotor approximation (RRA) as well as to the impulsive approximation (IA), and the effect of rotational-vibrational coupling on the both RRA and IA is examined in detail. We find that the current available TFCPs may overcome the technical limitation of terahertz half-cycle pulse for enhancing the field-free molecular orientation.

View Article and Find Full Text PDF

We propose an approach to determine the carrier-envelope phase (CEP) of a terahertz few-cycle pulse by observing the field-free molecular orientation. We find that the degree of orientation sensitively depends on the CEP, providing a new route for measuring the CEP without phase ambiguity. By taking advantage of the field-free molecular orientation, an important effect of the CEP drift caused by the dephasing of the generating medium on the accurate measurement of the CEP value is eliminated.

View Article and Find Full Text PDF

The diabatic photodissociation and photoionization processes of the NaI molecule are studied theoretically using the quantum wave packet method. A pump laser pulse is used to prepare a dissociation wave packet that propagates through both the ionic channel (NaI-->Na(+)+I(-)) and the covalent channel (NaI-->Na+I). A Stark pulse is used to control the diabatic dissociation dynamics and a probe pulse is employed to ionize the products from the two channels.

View Article and Find Full Text PDF

The dissociation dynamics of Br2 molecules induced by two femtosecond pump pulses are studied based on the calculation of time-dependent quantum wave packet. Perpendicular transition from X 1Sigma g+ to A 3Pi 1u+ and 1Pi 1u+ and parallel transition from X 1Sigma g+ to B 3Pi 0u+, involving two product channels Br (2P3/2)+Br (2P3/2) and Br (2P3/2)+Br* (2P1/2), respectively, are taken into account. Two pump pulses create dissociating wave packets interfering with each other.

View Article and Find Full Text PDF

A theoretical model used for calculating the fluorescence depletion spectrum (FDS) of molecules in liquids induced by femtosecond pump-probe laser pulses is proposed based on the reduced density matrix theory. The FDS intensity is obtained by calculating the stimulated emission of the excited electronic state. As an application of the theoretical model, the FDS of oxazine 750 (OX-750) molecule in acetone solution is calculated.

View Article and Find Full Text PDF

The absorption spectra of the C(2A2) <-- X(2B1) transition of the OBrO molecule are calculated using three-dimensional time-dependent wave-packet method in Radau coordinates for a total angular momentum J=0. The wave packet is propagated using the split operator technique associated with fast Fourier transform. Employing the basis functions obtained by one-dimensional Fourier grid Hamiltonian method, the initial wave packet is calculated directly on the three-dimensional Fourier grid.

View Article and Find Full Text PDF