Publications by authors named "Shu-Kong So"

Organic photovoltaic cells using Y6 non-fullerene acceptors have recently achieved high efficiency, and it was suggested to be attributed to the charge-transfer (CT) nature of the excitations in Y6 aggregates. Here, by combining electroabsorption spectroscopy measurements and electronic-structure calculations, we find that the charge-transfer character already exists in isolated Y6 molecules but is strongly increased when there is molecular aggregation. Surprisingly, it is found that the large enhanced charge transfer in clustered Y6 molecules is not due to an increase in excited-state dipole moment, Δμ, as observed in other organic systems, but due to a reduced polarizability change, Δp.

View Article and Find Full Text PDF

The development of advanced perovskite emitters has considerably improved the performance of perovskite light-emitting diodes (LEDs). However, the further development of perovskite LEDs requires ideal device electrical properties, which strongly depend on its interfaces. In perovskite LEDs with conventional p-i-n structures, hole injection is generally less efficient than electron injection, causing charge imbalance.

View Article and Find Full Text PDF

In organic solar cells (OSCs), a thick active layer usually yields a higher photocurrent with broader optical absorption than a thin active layer. In fact, a ∼300 nm thick active layer is more compatible with large-area processing methods and theoretically should be a better spot for efficiency optimization. However, the bottleneck of developing high-efficiency thick-film OSCs is the loss in fill factor (FF).

View Article and Find Full Text PDF

Wide-bandgap perovskites as a class of promising top-cell materials have shown great promise in constructing efficient perovskite-based tandem solar cells, but their intrinsic relatively low radiative efficiency results in a large open-circuit voltage () deficit and thereby limits the whole device performance. Reducing film flaws or optimizing interfacial energy level alignments in wide-bandgap perovskite devices can efficiently inhibit nonradiative recombination to boost device and efficiency. However, the simultaneous regulation on both sides and their underlying mechanism are less explored.

View Article and Find Full Text PDF

The transfer of heat energy in organic semiconductors (OSCs) plays an important role in advancing the applications of organic electronics, especially for lifetime issues. However, compared with crystalline inorganic semiconductors, the thermal transport of OSCs is less efficient and a relevant understanding is very limited. In this contribution, we show that the heat conduction of OSCs can be enhanced by blending with a "commodity" insulator (both thermal and electrical).

View Article and Find Full Text PDF

An organic small molecule, 1-bromo-4-(methylsulfinyl)benzene (BBMS), was utilized to reduce the energy disorder of a Sn-Pb alloyed perovskite film via hydrogen bonding and coordination bonding interactions, and the resultant BBMS-treated device showed a high efficiency of over 22 % as well as outstanding long-term stability.

View Article and Find Full Text PDF

Doping has been widely used to control the charge carrier concentration in organic semiconductors. However, in conjugated polymers, n-doping is often limited by the tradeoff between doping efficiency and charge carrier mobilities, since dopants often randomly distribute within polymers, leading to significant structural and energetic disorder. Here, we screen a large number of polymer building block combinations and explore the possibility of designing n-type conjugated polymers with good tolerance to dopant-induced disorder.

View Article and Find Full Text PDF

Organic photovoltaic (OPV) cells have found their potential applications in the harvest of indoor light photons. However, the output power of such indoor devices is usually far from the demand of the internet of things. Therefore, it is essential to boost the output power of indoor organic photovoltaics to a much higher level.

View Article and Find Full Text PDF

The near-infrared (NIR) absorbing fused-ring electron acceptor, COi8DFIC, has demonstrated very good photovoltaic performance when combined with PTB7-Th as a donor in binary organic solar cells (OSCs). In this work, the NIR acceptor was added to state-of-the-art PBDBT-2F:IT4F-based solar cells as a third component, leading to (i) an efficiency increase of the ternary devices compared to the binary solar cells in the presence of the highly crystalline COi8DFIC acceptor and (ii) much-improved photostability under 1-sun illumination. The electron transport properties were investigated and revealed the origin of the enhanced device performance.

View Article and Find Full Text PDF

Conventional organic solar cell (OSC) systems have significant energy offsets between the donor and acceptor both at the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels. Because of this, in a bulk heterojunction (BHJ) system, electrons typically transport in acceptors, whereas holes typically transport in donors. It is not favorable for electrons to hop back and forth between the donor and acceptor because the hopping is energetically disfavored.

View Article and Find Full Text PDF

The quality of solution-processed zinc oxide (ZnO) nanoparticles (NPs) is often correlated with their photoluminescence (PL) spectral characteristics. However, the reported PL spectral characteristics lack consistency and remain controversial. Here we report that "defect-emission free" PL spectra can even be obtained in thin films composed of as-synthesized ZnO NPs.

View Article and Find Full Text PDF

Narrow bandgap n-type organic semiconductors (n-OS) have attracted great attention in recent years as acceptors in organic solar cells (OSCs), due to their easily tuned absorption and electronic energy levels in comparison with fullerene acceptors. Herein, a new n-OS acceptor, Y5, with an electron-deficient-core-based fused structure is designed and synthesized, which exhibits a strong absorption in the 600-900 nm region with an extinction coefficient of 1.24 × 10 cm , and an electron mobility of 2.

View Article and Find Full Text PDF

A cryogenic process is introduced to control the crystallization of perovskite layers, eliminating the need for the use of environmentally harmful antisolvents. This process enables decoupling of the nucleation and the crystallization phases by inhibiting chemical reactions in as-cast precursor films rapidly cooled down by immersion in liquid nitrogen. The cooling is followed by blow-drying with nitrogen gas, which induces uniform precipitation of precursors due to the supersaturation of precursors in the residual solvents at very low temperature, while at the same time enhancing the evaporation of the residual solvents and preventing the ordered precursors/perovskite from redissolving into the residual solvents.

View Article and Find Full Text PDF

Carbon-based perovskite solar cells (PVSCs) without hole transport materials are promising for their high stability and low cost, but the electron transporting layer (ETL) of TiO is notorious for inflicting hysteresis and instability. In view of its electron accepting ability, C is used to replace TiO for the ETL, forming a so-called all carbon based PVSC. With a device structure of fluorine-doped tin oxide (FTO)/C /methylammonium lead iodide (MAPbI )/carbon, a power conversion efficiency (PCE) is attained up to 15.

View Article and Find Full Text PDF

High-quality pinhole-free perovskite film with optimal crystalline morphology is critical for achieving high-efficiency and high-stability perovskite solar cells (PSCs). In this study, a p-type π-conjugated polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)-benzo[1,2-b:4,5-b'] dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl) benzo[1',2'-c:4',5'-c'] dithiophene-4,8-dione))] (PBDB-T) is introduced into chlorobenzene to form a facile and effective template-agent during the anti-solvent process of perovskite film formation. The π-conjugated polymer PBDB-T is found to trigger a heterogeneous nucleation over the perovskite precursor film and passivate the trap states of the mixed perovskite film through the formation of Lewis adducts between lead and oxygen atom in PBDB-T.

View Article and Find Full Text PDF

The light soaking effect (LSE) is widely known in perovskite solar cells (PVSCs), but its origin is still elusive. In this study, we show that in common with hysteresis, the LSE is owed to the ion migration in PVSCs. Driven by the photovoltage, the mobile ions in the perovskite materials (MA/I) migrate to the selective contacts, forming a boosted P-i-N junction resulting in enhanced charge separation.

View Article and Find Full Text PDF

Regio-random (P1) and -regular (P2) difluorobenzene-naphthalene-containing polymer acceptors were developed for bulk-heterojunction all-polymer solar cells (all-PSCs). P2 exhibited significantly higher crystallinity in thin films, providing high spectral absorptivity and electron mobility than P1. When used in all-PSC devices, P2 afforded a respectably higher power conversion efficiency of over 5%.

View Article and Find Full Text PDF

Synthesis of high quality perovskite absorber is a key factor in determining the performance of the solar cells. We demonstrate that hybrid chemical vapor deposition (HCVD) growth technique can provide high level of versatility and repeatability to ensure the optimal conditions for the growth of the perovskite films as well as potential for batch processing. It is found that the growth ambient and degree of crystallization of CHNHPbI (MAPI) have strong impact on the defect density of MAPI.

View Article and Find Full Text PDF

A series of heterocyclic spiro derivatives has been successfully synthesized and characterized by photophysical and electrochemical studies. Taking advantage of their excellent hole-transporting properties, highly efficient small-molecular organic photovoltaic devices based on these heterocyclic compounds as donors with very low dopant concentrations have been prepared; particularly, a high open-circuit voltage of up to 1.10 V and a power conversion efficiency of up to 5.

View Article and Find Full Text PDF

Organic solar cells (OSCs) with inverted structure usually exhibit higher power conversion efficiency (PCE) and are more stable than corresponding devices with regular configuration. Indium tin oxide (ITO) surface is often modified with solution-processed low work function metal oxides, such as ZnO, serving as the transparent cathode. However, the defect-induced subgap states in the ZnO interlayer hamper the efficient charge collection and the performance reproducibility of the OSCs.

View Article and Find Full Text PDF

A novel beta-diketone with an electro-transporting oxadiazole group, 1-(4'-(5-(4-methylphenyl)-1,3,4-oxadiazol-2-yl)biphenyl-4-yl)-4,4,4-trifluorobutane-1,3-dione (MPBDTFA), was prepared with high yield. With this synthesized ligand as the first ligand and 1,10-phenanthroline (Phen) as the secondary ligand, a new europium(III) ternary complex, Eu(MPBDTFA)(3)Phen, was synthesized. The new beta-diketone and its europium(III) ternary complex were characteristized by elemental analysis, thermo-gravimetric analysis, IR and UV-visible spectroscopies.

View Article and Find Full Text PDF