Publications by authors named "Shu-Hui C Yen"

Abnormal accumulation of filamentous α-synuclein (α-syn) in neurons, regarded as Lewy bodies (LBs), are a hallmark of Parkinson disease (PD). Although the exact mechanism(s) underlying LBs formation remains unknown, autophagy and ER stress response have emerged as two important pathways affecting α-syn aggregation. In present study we tested whether cells with the tetracycline-off inducible overexpression of α-syn and accumulating α-syn aggregates can benefit from autophagy activation elicited by nutrient deprivation (ND), since this approach was reported to effectively clear cellular polyglutamine aggregates.

View Article and Find Full Text PDF

The formation of Lewy bodies containing α-synuclein (α-syn), prominent loss of dopaminergic neurons and dopamine (DA) deficiency in substantia nigra and striatum are histopathological and biochemical hallmarks of Parkinson's disease (PD). Multiple lines of evidence have indicated that a critical pathogenic factor causing PD is enhanced production of reactive oxygen species (ROS), which reacts readily with polyunsaturated fatty acids to cause lipid peroxidation (LPO). LPO products have been shown to facilitate assembly of toxic α-syn oligomers in in vitro studies.

View Article and Find Full Text PDF

Corticobasal degeneration (CBD) is a disorder affecting cognition and movement due to a progressive neurodegeneration associated with distinctive neuropathologic features, including abnormal phosphorylated tau protein in neurons and glia in cortex, basal ganglia, diencephalon, and brainstem, as well as ballooned neurons and astrocytic plaques. We identified three cases of CBD with olivopontocerebellar atrophy (CBD-OPCA) that did not have α-synuclein-positive glial cytoplasmic inclusions of multiple system atrophy (MSA). Two patients had clinical features suggestive of progressive supranuclear palsy (PSP), and the third case had cerebellar ataxia thought to be due to idiopathic OPCA.

View Article and Find Full Text PDF

Neuronal inclusions of α-synuclein (α-syn), termed Lewy bodies, are a hallmark of Parkinson disease (PD). Increased α-syn levels can occur in brains of aging human and neurotoxin-treated mice. Because previous studies have shown increased brain lactate levels in aging brains, in PD affected subjects when compared with age-matched controls, and in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP), we tested the effects of lactate exposure on α-syn in a cell-based study.

View Article and Find Full Text PDF

Background: Accumulation of filamentous α-synuclein as Lewy bodies is a hallmark of Parkinson's disease. To identify the mechanisms involved in α-synuclein assembly and determine whether the assemblies are cytotoxic, we developed a cell model (3D5) that inducibly expresses wild-type human α-synuclein and forms inclusions that reproduce many morphological and biochemical characteristics of Lewy bodies. In the present study, we evaluated the effects of several histone deacetylase inhibitors on α-synuclein aggregation in 3D5 cells and primary neuronal cultures.

View Article and Find Full Text PDF

Filamentous alpha-synuclein (alpha-syn) aggregates form Lewy bodies (LBs), the neuropathologic hallmarks of Parkinson disease and related alpha-synucleinopathies. To model Lewy body-associated neurodegeneration, we generated transfectant 3D5 of human neuronal-type in which expression of human wild-type alpha-syn is regulated by the tetracycline off (TetOff)-inducible mechanism. Retinoic acid-elicited differentiation promoted assembly of alpha-syn aggregates after TetOff induction in 3D5 cells.

View Article and Find Full Text PDF

Alpha-synuclein is likely to play a key role in the development of Parkinson's disease as well as other synucleinopathies. In animal models, overexpression of full-length or carboxy-terminally truncated alpha-synuclein has been shown to produce pathology. Although the proteosome and lysosome have been proposed to play a role in the degradation of alpha-synuclein, the enzyme(s) involved in alpha-synuclein clearance and generation of its carboxy-terminally truncated species have not been identified.

View Article and Find Full Text PDF

Intracellular accumulation of alpha-synuclein (alpha-Syn) as filamentous aggregates is a pathological feature shared by Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, referred to as synucleinopathies. To understand the mechanisms underlying alpha-Syn aggregation, we established a tetracycline-off inducible transfectant (3D5) of neuronal lineage overexpressing human wild-type alpha-Syn. Alpha-Syn aggregation was initiated by exposure of 3D5 cells to FeCl2.

View Article and Find Full Text PDF

Intraneuronal deposition of filamentous tau is a hallmark of Alzheimer's disease (AD) and related tauopathies. We developed previously a cellular model recapitulating such tau anomaly and demonstrated therein consistent production of 70-kD tau. Importantly, the 70-kD species appears to derive from tau fragments with carboxy-terminal truncation and is larger than intact tau in size, suggesting the oligomeric nature in its assembly from tau.

View Article and Find Full Text PDF

Intraneuronal deposition of microtubule-associated protein tau in filamentous aggregates constitutes a pathological hallmark of neurofibrillary degeneration that is characteristic of Alzheimer's disease (AD) and related disorders known collectively as tauopathies. Formation of such fibril inclusions, consisting of hyperphosphorylated tau in multiple isoforms, correlates with the severity of cognitive decline in AD. How neurofibrillary pathology evolves in tauopathy remains unclear at present, but availability of a cellular model with robust tau aggregation will permit experimental scrutiny of the mechanistic process leading to such neurodegeneration.

View Article and Find Full Text PDF