Publications by authors named "Shu-Hua Mu"

Attention-deficit/hyperactivity disorder has increasingly been conceptualized as a disorder of abnormal brain connectivity. However, far less is known about the structural covariance in different subtypes of this disorder and how those differences may contribute to the symptomology of these subtypes. In this study, we used a combined volumetric-based methodology and structural covariance approach to investigate structural covariance of subcortical brain volume in attention-deficit/hyperactivity disorder-combined and attention-deficit/hyperactivity disorder-inattentive patients.

View Article and Find Full Text PDF

Attention-deficit/hyperactivity disorder (ADHD) is presumed to be heterogeneous, but the best way to characterize this heterogeneity remains unclear. Although considerable evidence suggests that the 2 different types of ADHD, inattention and combined, have different cognitive and behavioral profiles, and underlying neurobiologies, we currently lack information on whether these subtypes reflect separated brain structure changes. Structural magnetic resonance imaging scans (N = 234), diagnostic, and demographic information were obtained from the ADHD-200 database.

View Article and Find Full Text PDF

The hippocampus is known to be comprised of several subfields, but the developmental trajectories of these subfields are under debate. In this study, we analyzed magnetic resonance imaging (MRI) data from a cross-sectional sample (198 healthy Chinese) using an automated segmentation tool to delineate the development of the hippocampal subregions from 6 to 26 years of age. We also examined whether gender and hemispheric differences influence the development of these subregions.

View Article and Find Full Text PDF

Purpose: Clinical research suggests that transcranial direct current stimulation (tDCS) at bilateral supraorbital foramen and inferior orbital rim and nose intersections may facilitate rehabilitation after stroke. However, the underlying neurobiological mechanisms of tDCS remain poorly understood, impeding its clinical application. Here, we investigated the effect of tDCS applied after stroke on neural cells.

View Article and Find Full Text PDF

We previously demonstrated that overexpression of tropomyosin receptor kinase A (TrkA) promotes the survival and Schwann cell-like differentiation of bone marrow stromal stem cells in nerve grafts, thereby enhancing the regeneration and functional recovery of the peripheral nerve. In the present study, we investigated the molecular mechanisms underlying the neuroprotective effects of TrkA in bone marrow stromal stem cells seeded into nerve grafts. Bone marrow stromal stem cells from Sprague-Dawley rats were infected with recombinant lentivirus vector expressing rat TrkA, TrkA-shRNA or the respective control.

View Article and Find Full Text PDF

Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 kDa, calbindin, and μ-opioid receptor, while cortical lesions reversed these pathological changes.

View Article and Find Full Text PDF

. We report the dynamic anatomical sequence of human cortical gray matter development from late childhood to young adults using VBM and ROI-based methods. .

View Article and Find Full Text PDF