Proc Natl Acad Sci U S A
January 2025
Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.
View Article and Find Full Text PDFThere is an urgent need to stimulate agricultural output in many tropical and subtropical countries of the world to combat hunger and malnutrition. The starchy crop cassava (), growing even under sub-optimal conditions, is a key staple food in these regions, providing millions of people with food. Cassava biotechnology is an important technique benefiting agricultural progress, but successful implementation of many biotechnological concepts depends on the availability of the right spatiotemporal expression tools.
View Article and Find Full Text PDFCassava (Manihot esculenta Crantz) is one of the important staple foods in Sub-Saharan Africa. It produces starchy storage roots that provide food and income for several hundred million people, mainly in tropical agriculture zones. Increasing cassava storage root and starch yield is one of the major breeding targets with respect to securing the future food supply for the growing population of Sub-Saharan Africa.
View Article and Find Full Text PDFAs key mediators linking developmental processes with plant immunity, TCP (TEOSINTE-BRANCHED, CYCLOIDEA, PROLIFERATION FACTOR 1 and 2) transcription factors have been increasingly shown to be targets of pathogenic effectors. We report here that TB/CYC (TEOSINTE-BRANCHED/CYCLOIDEA)-TCPs are destabilized by phytoplasma SAP11 effectors, leading to the proliferation of axillary meristems. Although a high degree of sequence diversity was observed among putative SAP11 effectors identified from evolutionarily distinct clusters of phytoplasmas, these effectors acquired fundamental activity in destabilizing TB/CYC-TCPs.
View Article and Find Full Text PDFPhytoplasmas are bacterial phytopathogens that release virulence effectors into sieve cells and act systemically to affect the physiological and morphological state of host plants to promote successful pathogenesis. We show here that transgenic Nicotiana benthamiana lines expressing the secreted effector SAP11 from Candidatus Phytoplasma mali exhibit an altered aroma phenotype. This phenomenon is correlated with defects in the development of glandular trichomes and the biosynthesis of 3-isobutyl-2-methoxypyrazine (IBMP).
View Article and Find Full Text PDFThe bacterial genus "Candidatus Phytoplasma" contains a group of insect-transmitted plant pathogens in the class Mollicutes. Here, we report a draft genome assembly and annotation of strain NCHU2014, which belongs to the 16SrII-A subgroup within this genus and is associated with purple coneflower witches' broom disease in Taiwan.
View Article and Find Full Text PDFXopDXcc8004, a type III effector of Xanthomonas campestris pv. campestris (Xcc) 8004, is considered a shorter version of the XopD, which lacks the N-terminal domain. To understand the functions of XopDXcc8004, in planta, a transgenic approach combined with inducible promoter to analyze the effects of XopDXcc8004 in Arabidopsis was done.
View Article and Find Full Text PDFCDGSH iron-sulfur domain-containing proteins (CISDs) are newly discovered proteins with electron-accepting and electron-donating moieties. Although the CISDs of plants and animals show high sequence similarity in their CDGSH domain at the C-terminus, their N-terminal peptides have low sequence homology. Here, we show that At-NEET, a recently identified Arabidopsis CISD, contains a cleavable N-terminal peptide for chloroplast targeting, which is different from the uncleavable N-terminal peptide of mammal CISDs for mitochondrial outer membrane localization.
View Article and Find Full Text PDF