Extracellular vesicles (EVs) have attracted increasing attention because of their potential roles in various biological processes and medical applications. However, isolation of EVs is technically challenging mainly due to their small and heterogeneous size and contaminants that are often co-isolated. We have thus designed a two-step magnetic bead-based (2MBB) method for isolation a subset of EVs as well as their microRNAs from samples of a limited amount.
View Article and Find Full Text PDFCirculating extracellular vesicles (EVs), which can contain a wide variety of molecules such as proteins, messenger ribonucleic acids (mRNAs), micro ribonucleic acids (miRNAs) and deoxyribonucleic acids (DNAs) from cells or tissues of origin, have attracted great interest given their potential to serve as biomarkers that can be harvested in body fluids (i.e., relatively non-invasive).
View Article and Find Full Text PDFIn this study, an enzyme linked DNA aptamer based assay was optimized for human cardiac troponin I (cTnI) detection which is a prominent biomarker for acute myocardial infarction (AMI), on an integrated microfluidic platform. This platform allowed for the multiplex detection of six samples (5 μL per sample), and only 30 min were required for detection. First, cTnI-specific aptamers were surface-coated on magnetic beads.
View Article and Find Full Text PDFWe have developed a swift and simplistic protein immunoassay using aptamer functionalized AlGaN/GaN high electron mobility transistors (HEMTs). The unique design of the sensor facilitates protein detection in a physiological salt environment overcoming charge screening effects, without requiring sample preprocessing. This study reports a tunable and amplified sensitivity of solution-gated electric double layer (EDL) HEMT-based biosensors, which demonstrates significantly enhanced sensitivity by designing a smaller gap between the gate electrode and the detection, and by operating at higher gate voltage.
View Article and Find Full Text PDFAlthough cardiovascular diseases such as heart failure (HF) affect 30 million people globally, the early detection of HF has, until recently, been difficult and prone to misdiagnoses. Monitoring the circulatory levels of a relatively new biomarker, the N-terminal prohormone of a B-type natriuretic peptide, could be used for early risk evaluation of HF. Therefore, we developed a pneumatically-driven, automatic integrated microfluidic platform equipped with micromixers, micropumps, and microvalves for the simultaneous detection of NT-proBNP in up to six clinical samples within 25 min by using a novel aptamer-based sandwich assay, and the limit of detection was only 1.
View Article and Find Full Text PDFCertain blood-borne biomarkers offer a potent methodology for understanding the risk of cardiovascular diseases (CVDs) with clinicians generally advocating the use of multiple biomarkers for proper risk assessment of CVDs. Herein four such CVDs biomarkers- C-reactive protein (CRP), N-terminal pro b-type natriuretic peptide (NT-proBNP), cardiac troponin I (cTnI), and fibrinogen- were rapidly (5 min) analyzed from clinical samples (~ 4 µL) on an integrated microfluidic platform equipped with 1) immobilized highly specific aptamer probes and 2) field-effect transistor (FET)-based sensor arrays. The calibration curve from the FET sensor arrays showed good agreement in the physiological concentration ranges for CRP (0.
View Article and Find Full Text PDFCancer is the most serious disease worldwide, and ovarian cancer (OvCa) is the second most common type of gynecological cancer. There is consequently an urgent need for early-stage detection of OvCa, which requires affinity reagent biomarkers for OvCa. Systematic evolution of ligands by exponential enrichment (SELEX) and phage display technology are two powerful technologies for identifying affinity reagent biomarkers.
View Article and Find Full Text PDFAs cardiovascular diseases (CVD) are responsible for millions of deaths annually, there is a need for rapid and sensitive diagnosis of CVD at earlier stages. Aptamers generated by systematic evolution of ligands by exponential enrichment (SELEX) processes have been shown to be superior to conventional antibody-based cardiac biomarker detection. However, SELEX is a complicated, lengthy procedure requiring multiple rounds of extraction/amplification and well-trained personnel.
View Article and Find Full Text PDFBackground: Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is characterized by conjugated hyperbilirubinemia and increased plasma bile acid concentrations. However, the underlying mechanisms remain unclear. We established a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for simultaneously quantifying plasma bile acids and examined bile acid profiles in NICCD infants.
View Article and Find Full Text PDFIn this study, we report the development of a high sensitivity assay for the detection of cardiac troponin I using electrical double layer gated high field AlGaN/GaN HEMT biosensor. The unique gating mechanism overcomes the drawback of charge screening seen in traditional FET based biosensors, allowing detection of target proteins in physiological solutions without sample processing steps. Troponin I specific antibody and aptamer are used as receptors.
View Article and Find Full Text PDFCardiovascular diseases (CVDs) cause more than 17 × 10 deaths worldwide on a yearly basis. Early diagnosis of CVDs is therefore of great need. The C-reactive protein (CRP) is an important biomarker for analyzing the risks of CVDs.
View Article and Find Full Text PDFIn this study, a new type of field-effect transistor (FET)-based biosensor is demonstrated to be able to overcome the problem of severe charge-screening effect caused by high ionic strength in solution and detect proteins in physiological environment. Antibody or aptamer-immobilized AlGaN/GaN high electron mobility transistors (HEMTs) are used to directly detect proteins, including HIV-1 RT, CEA, NT-proBNP and CRP, in 1X PBS (with 1%BSA) or human sera. The samples do not need any dilution or washing process to reduce the ionic strength.
View Article and Find Full Text PDFDiabetes can be diagnosed and monitored by measurement of the cutoff ratio between glycated hemoglobins (HbA1c) and total hemoglobin (Hb), which does not require a fasting blood sample and is less influenced by biological variations. In this study, we combined the advantages of the microfluidic system and the selected low-cost, stable and specific aptamers and developed an integrated, aptamer-based microfluidic system for automatic glycated hemoglobin measurements. The detection process of human whole blood can be totally automated in this integrated microfluidic system.
View Article and Find Full Text PDFBlood glycated hemoglobin (HbA1c), reflecting the average blood glucose level in the proceeding 2-3 months, is recommended for screening/diagnosing and patient management of diabetes. However, accurate measurement of the HbA1c level at the point of care is hampered by costly, large-scale instruments (such as high-performance liquid chromatography) or reagent instability of classical immunologic methods, which involve antibody-based immunoturbidimetry. In this work, an integrated microfluidic system using aptamer-based testing to measure HbA1c in blood samples is therefore presented.
View Article and Find Full Text PDFBlood glycated hemoglobin (HbA1c) levels reflecting average glucose concentrations over the past three months are fundamental for the diagnosis, monitoring, and risk assessment of diabetes. It has been hypothesized that aptamers, which are single-stranded DNAs or RNAs that demonstrate high affinity to a large variety of molecules ranging from small drugs, metabolites, or proteins, could be used for the measurement of HbA1c. Aptamers are selected through an in vitro process called systematic evolution of ligands by exponential enrichment (SELEX), and they can be chemically synthesized with high reproducibility at relatively low costs.
View Article and Find Full Text PDFIt has been demonstrated that peripheral injection of anti-amyloid-β (Aβ) antibodies to patients with Alzheimer's disease (AD) and AD transgenic mice facilitate Aβ clearance. We hypothesized that peripheral circulating Aβ-binding proteins also possess the ability to enhance Aβ clearance and the levels of circulating Aβ-binding proteins could serve as early AD biomarkers. Circulating Aβ-binding proteins were isolated from plasma and identified by LC-MS/MS.
View Article and Find Full Text PDFBackground: Nitric oxide (NO) donors have been reported to induce choleresis via an increased excretion of glutathione. The effects of another gas molecule, carbon monoxide (CO), on bile formation are, however, inconsistent among previous reports. We investigated the sequential changes of bile output and the biliary contents in rats with or without CO supplementation to elucidate the mechanism of CO on bile excretion.
View Article and Find Full Text PDFBackground: A multicenter study conducted in Southeast Asia to derive reference intervals (RIs) for 72 commonly measured analytes (general chemistry, inflammatory markers, hormones, etc.) featured centralized measurement to clearly detect regionality in test results. The results of 31 standardized analytes are reported, with the remaining analytes presented in the next report.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
April 2013
Objective: One potential mechanism through which obesity exerts adverse effects on the vascular system is by increasing aortic stiffness, a change known to be predictive of increased cardiovascular mortality. The aim of this study was to investigate the pathophysiology that links obesity to aortic stiffening.
Approach And Results: Obese (ob/ob) mice were used to examine physical, morphological, and molecular changes in the aorta in response to obesity.
Background: Patients with chronic liver disease had lower serum concentrations 25-hydroxyvitamin D (25OHD). Glycine, a nonessential amino acid, exerts anti-inflammatory, cytoprotective, and immunomodulatory properties. This study aimed to establish a tandem mass spectrometry assay to measure 25OHD in guinea pigs serum and to investigate the effects of glycine against the liver damage induced by bile duct ligation (BDL).
View Article and Find Full Text PDFThe systematic evolution of ligands by exponential enrichment (SELEX) is a screening technique that involves the progressive selection of highly specific ligands via repeated rounds of partition and amplification from a large random pool of nucleic acid sequences. The products of this selection process are called aptamers and are either short single-stranded deoxyribonucleic acid (ssDNA) or ribonucleic acid (RNA) molecules with a high binding affinity to a large variety of target analytes. However, SELEX is a lengthy, labor-intensive, iterative process requiring multiple rounds of extraction and polymerase chain reaction (PCR) amplification.
View Article and Find Full Text PDFBackground: Ischemia-modified albumin (IMA), measured by the cobalt-binding capacity of albumin, is a promising biomarker for cardiac ischemia. The IMA-to-serum albumin ratio (IMAR) has been reported to relate to the severity of decompensated liver cirrhosis. This study aimed to assess IMA and IMAR as a liver function test and to investigate whether albumin infusion changes IMAR in patients with liver cirrhosis.
View Article and Find Full Text PDFBackground: Citrin, encoded by SLC25A13 gene, is a mitochondrial solute transporter with a crucial role in urea, nucleotide and protein synthesis. SLC25A13 mutations cause two phenotypes, adult-onset type II citrullinemia and neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). This study aimed to develop a high resolution melting (HRM) analysis for SLC25A13 mutation scanning and determine the carrier rate in Taiwan.
View Article and Find Full Text PDFBackground: Frail older persons are at high risk of morbidity and mortality, and are characterized by body composition alterations. Serum testosterone, which regulates body composition, declines with age. We investigated the relation between serum testosterone level and physiological frailty in both older men and women.
View Article and Find Full Text PDFThe systematic evolution of ligands by exponential enrichment (SELEX) is an experimental procedure that allows screening of given molecular targets by desired binding affinities from an initial random pool of oligonucleotides and oligomers. The final products of SELEX are usually referred as aptamers, which are recognized as promising molecules for a variety of biomedical applications. However, SELEX is an iterative process requiring multiple rounds of extraction and amplification that demands significant time and labor.
View Article and Find Full Text PDF