Background: Carbon-based nanozymes have recently received enormous concern, however, there is still a huge challenge for inexpensive and large-scale synthesis of magnetic carbon-based "Two-in-One" mimics with both peroxidase (POD)-like and laccase-like activities, especially their potential applications in multi-mode sensing of antibiotics and neurotransmitters in biofluids. Although some progresses have been made in this field, the feasibility of biomass-derived carbon materials with both POD-like and laccase-like activities by polyatomic doping strategy is still unclear. In addition, multi-mode sensing platform can provide a more reliable result because of the self-validation, self-correction and mutual agreement.
View Article and Find Full Text PDFIn this work, shrimp shell-derived magnetic NiFeO/N, O co-doped porous carbon nanozyme with superior oxidase (OXD)-like activity was prepared and used for colorimetric/photothermal/smartphone dual-signal triple-mode detection of antioxidants in fruits and beverages. The magnetic NiFeO/N, O co-doped porous carbon (MNPC) material was triumphantly fabricated using a combined in-situ surface chelation and pyrolysis method. The resultant MNPC composite exhibits a superior OXD-like activity, which can effectively oxidize 3,3',5,5'-tetramethylbenzidine (TMB) for yielding colorimetric/temperature dual-signal (CTDS) in absence of HO.
View Article and Find Full Text PDF