Creating artificial enzymes by the genetic incorporation of noncanonical amino acids with catalytic side chains would expand the enzyme chemistries that have not been discovered in nature. Here, we report the design of an artificial enzyme that uses -boronophenylalanine as the catalytic residue. The artificial enzyme catalyzes Michael-type Friedel-Crafts alkylation through covalent activation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2023
Incorporating enzymatic reactions into natural product synthesis can significantly improve synthetic efficiency and selectivity. In contrast to the increasing applications of biocatalytic functional-group interconversions, the use of enzymatic C-C bond formation reactions in natural product synthesis is underexplored. Herein, we report a concise and efficient approach for the synthesis of [7.
View Article and Find Full Text PDFStereoselective syntheses of terpenoids in a more efficient manner have been a long-term pursuit for synthetic chemists. Herein we describe the two-step, enantiospecific and protecting-group-free synthesis of (+)-schisanwilsonene A from a carotane compound, which was produced in . We also completed the first enantiomeric synthesis of (+)-tormesol in five steps.
View Article and Find Full Text PDFA combined approach toward syntheses of epoxyguaiane sesquiterpenes is presented. By use of a fungus sesquiterpene cyclase, guaian-6,10(14)-diene was produced through metabolic engineering of the isoprenoid pathway in . (-)-Englerin A, (-)-oxyphyllol, (+)-orientatol E, and (+)-orientalol F have been synthesized in two to six steps.
View Article and Find Full Text PDF