Publications by authors named "Shu Hiragi"

Small extracellular vesicles (sEVs) are largely classified into two types, plasma-membrane derived sEVs and endomembrane-derived sEVs. The latter type (referred to as exosomes herein) is originated from late endosomes or multivesicular bodies (MVBs). In order to release exosomes extracellularly, MVBs must fuse with the plasma membrane, not with lysosomes.

View Article and Find Full Text PDF

Rab5 and Rab7 are known to regulate endosome maturation, and a Rab5-to-Rab7 conversion mediated by a Rab7 activator, Mon1-Ccz1, is essential for progression of the maturation process. However, the importance and mechanism of Rab5 inactivation during endosome maturation are poorly understood. Here, we report a novel Rab5-GAP, TBC1D18, which is associated with Mon1 and mediates endosome maturation.

View Article and Find Full Text PDF

Two small GTPases, Rab1 and Rab5, are key membrane trafficking regulators that are conserved in all eukaryotes. They have recently been found to be essential for cell survival and/or growth in cultured mammalian cells, thereby precluding the establishment of Rab1-knockout (KO) and Rab5-KO cells, making it extremely difficult to assess the impact of complete Rab1 or Rab5 protein depletion on cellular functions. Here, we generated and analyzed cell lines with conditional KO (CKO) of either Rab1 (Rab1A and Rab1B) or Rab5 (Rab5A, Rab5B and Rab5C) by using the auxin-inducible protein degradation system.

View Article and Find Full Text PDF

Exosomes, important players in cell-cell communication, are small extracellular vesicles of endocytic origin. Although single cells are known to release various kinds of exosomes (referred to as exosomal heterogeneity), very little is known about the mechanisms by which they are produced and released. Here, we established methods of studying exosomal heterogeneity by using polarized epithelial cells and showed that distinct types of small extracellular vesicles (more specifically CD9- and CD63-positive, Annexin I-negative small extracellular vesicles, which we refer to as exosomes herein) are differentially secreted from the apical and basolateral sides of polarized epithelial cells.

View Article and Find Full Text PDF

The small GTPase Rab11 (herein referring to the Rab11A and Rab11B isoforms) plays pivotal roles in diverse physiological phenomena, including the recycling of membrane proteins, cytokinesis, neurite outgrowth and epithelial morphogenesis. One effective method of analyzing the function of endogenous Rab11 is to overexpress a Rab11-binding domain from one of its effectors, for example, the C-terminal domain of Rab11-FIP2 (Rab11-FIP2-C), as a dominant-negative construct. However, the drawback of this method is the broader Rab-binding specificity of the effector domain, because Rab11-FIP2-C binds to Rabs other than Rab11, for example, to Rab14 and Rab25.

View Article and Find Full Text PDF

The Rab family of small GTPases regulates intracellular membrane trafficking by orchestrating the biogenesis, transport, tethering, and fusion of membrane-bound organelles and vesicles. Like other small GTPases, Rabs cycle between two states, an active (GTP-loaded) state and an inactive (GDP-loaded) state, and their cycling is catalyzed by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because an active form of each Rab localizes on a specific organelle (or vesicle) and recruits various effector proteins to facilitate each step of membrane trafficking, knowing when and where Rabs are activated and what effectors Rabs recruit is crucial to understand their functions.

View Article and Find Full Text PDF