Publications by authors named "Shu Guo"

Ultraviolet light (UV) can cause serious damage to human skin. The inflammatory reaction arising from repeated UV exposure leads to severe skin lesions and even promotes photo-carcinogenesis. Iron overload is featured by excessive iron intake and deposition and will promote inflammatory response inside cells.

View Article and Find Full Text PDF

Thin-film β tungsten (β-W), a metastable phase of tungsten, holds significant potential in the fabrication of superconducting and spin-memory devices. However, due to the rapid surface passivation of tungsten in oxygen and moisture, the synthesis of nanosized metastable β-W with the intrinsic atomic surface is still difficult, and their magnetic properties remain rather unexplored. Inspired by the strong host-guest interaction-induced stabilization, we reported the synthesis of atomically thin (1.

View Article and Find Full Text PDF

Alzheimer's disease (AD) affects more than 10% of the population ≥65 y of age, but the underlying biological risks of most AD cases are unclear. We show anti-poly-glycine-arginine (a-polyGR) positive aggregates frequently accumulate in sporadic AD autopsy brains (45/80 cases). We hypothesize that these aggregates are caused by one or more polyGR-encoding repeat expansion mutations.

View Article and Find Full Text PDF

Background: Chronic rhinosinusitis with nasal polyps (CRSwNPs) involves persistent sinus inflammation, with emerging evidence suggesting a potential role of rhinovirus (RV) in its pathophysiology. However, whether RV exists in nasal tissues and affects the nasal mucosa after the resolution of infection symptoms remains unknown.

Objective: To investigate the prevalence and impact of silent RV infection in nasal tissues.

View Article and Find Full Text PDF

Time persistence is a fundamental property of many complex physical and biological systems; thus understanding the phenomenon in the brain is of high importance. Time persistence has been explored at the level of stand-alone neural time-series, but since the brain functions as an interconnected network, it is essential to examine time persistence at the network level. Changes in resting-state networks have been previously investigated using both dynamic (i.

View Article and Find Full Text PDF

Dopamine (DA) in the striatum is vital for motor and cognitive behaviors. Midbrain dopaminergic neurons generate both tonic and phasic action potential (AP) firing patterns in behavior mice. Besides AP numbers, whether and how different AP firing patterns per se modulate DA release remain largely unknown.

View Article and Find Full Text PDF

We present a two-photon fluorescence microscope designed for high-speed imaging of neural activity at cellular resolution. Our microscope uses an adaptive sampling scheme with line illumination. Instead of building images pixel by pixel via scanning a diffraction-limited spot across the sample, our scheme only illuminates the regions of interest (i.

View Article and Find Full Text PDF

Soldering of ceramics/metals using an inactive commercial solder with the advantage of low cost has wide application prospects. The dissolution behavior of base metal could not be quantified, which has been a basic issue for the joining design. This work investigated the dissolution of the solid Al in liquid Sn with and without the ultrasound.

View Article and Find Full Text PDF

Adipose stem cell-derived exosomes (ADSC-EXO) have been demonstrated to promote osteogenic differentiation of bone marrow stem cells (BMSCs) and facilitate bone regeneration. The present study aims to investigate the effect of ADSC-EXO-loaded nano-hydroxyapatite/chitosan/poly-lactide-co-glycolide (nHA/CS/PLGA) scaffolds on maxillofacial bone regeneration using tissue engineering. ADSC-EXO was isolated and co-cultured with BMSCs, and the osteogenic differentiation of BMSCs was assessed through the detection of mineralized nodule formation, alkaline phosphatase (ALP) activity, and mRNA expression of COL1A1 and runt-related transcription factor 2 (RUNX2).

View Article and Find Full Text PDF

To generate and manipulate spin-polarized electronic states in solids are crucial for modern spintronics. The textbook routes employ quantum well states or Shockley/topological type surface states whose spin degeneracy is lifted by strong spin-orbit coupling and inversion symmetry breaking at the surface/interface. The resultant spin polarization is usually truncated because of the intertwining between multiple orbitals.

View Article and Find Full Text PDF

Neutrophilic inflammation contributes to multiple chronic inflammatory airway diseases, including asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), and is associated with an unfavorable prognosis. Here, using single-cell RNA sequencing (scRNA-seq) to profile human nasal mucosa obtained from the inferior turbinates, middle turbinates, and nasal polyps of CRSwNP patients, we identify two IL-1 signaling-induced cell subsets-LY6D club cells and IDO1 fibroblasts-that promote neutrophil recruitment by respectively releasing S100A8/A9 and CXCL1/2/3/5/6/8 into inflammatory regions. IL-1β, a pro-inflammatory cytokine involved in IL-1 signaling, induces the transdifferentiation of LY6D club cells and IDO1 fibroblasts from primary epithelial cells and fibroblasts, respectively.

View Article and Find Full Text PDF

Exosomes are nano-sized extracellular vesicles (EVs) released by diverse types of cells, which affect the functions of targeted cells by transporting bioactive substances. As the main component of exosomes, non-coding RNA (ncRNA) is demonstrated to impact multiple pathways participating in bone healing. Herein, this review first introduces the biogenesis and secretion of exosomes, and elucidates the role of the main cargo in exosomes, ncRNAs, in mediating intercellular communication.

View Article and Find Full Text PDF

Electronic orders such as charge density wave (CDW) and superconductivity raise exotic physics and phenomena as evidenced in recently discovered kagome superconductors and transition metal chalcogenides. In most materials, CDW induces a weak, perturbative effect, manifested as shadow bands, minigaps, resistivity kinks, etc. Here we demonstrate a unique example-transition metal tetratellurides TaTe_{4}, in which the CDW order dominates the electronic structure and transport properties.

View Article and Find Full Text PDF

Triangular lattice (TL) materials are a rich playground for investigating exotic quantum spin states and related applications in quantum computing and quantum information. Millimeter-level single crystals of REBO (RE = Tb-Yb) with a nearly perfect RE-based TL have been successfully grown via a high-temperature flux method and structurally characterized via single-crystal X-ray diffraction. These 113-type materials crystallize in a monoclinic crystal system with a 2/ space group.

View Article and Find Full Text PDF
Article Synopsis
  • Bone regeneration is critical for growth and healing, especially for the aging population and after surgeries like osteotomy due to bone tumors.
  • Electrical stimulation is a key focus in improving bone repair, offering economic and effective treatment options through various electroactive biomaterials.
  • The review highlights the relationship between electrical cues and cell behavior in bone healing, proposing ways to enhance therapies using these biomaterials to speed up recovery.
View Article and Find Full Text PDF

Rare-earth ()-based frustrated magnets are fertile playgrounds for discovering exotic quantum phenomena and exploring adiabatic demagnetization refrigeration applications. Here, we report the synthesis, structure, and magnetic properties of a family of rare-earth cyanurates (CNO)(OH) ( = Gd-Lu) with an acentric space group 6̅2. Magnetic susceptibility χ() and isothermal magnetization () measurements manifest that (CNO)(OH) ( = Gd, Dy-Yb) compounds exhibit no magnetic ordering down to 2 K, while Tb(CNO)(OH) shows long-range magnetic ordering around 3.

View Article and Find Full Text PDF

Quasi-1D chain antiferromagnets with reduced structural dimensionality are a rich playground for investigating novel quantum phenomena. We report the synthesis, crystal structure, and magnetism of two novel quasi-1D antiferromagnets, β-PbCu(TeO)Cl (I) and PbCu(TeO)Br (II). Their magnetic frameworks are constructed via Cu-based quasi-1D [Cu(2)O] zigzag chains with square-planar [Cu(1)OX] (X=Cl or Br) separated among 1D chains.

View Article and Find Full Text PDF

The field of bone regeneration has always been a hot and difficult research area, and there is no perfect strategy at present. As a new type of biodegradable material, magnesium alloys have excellent mechanical properties and bone promoting ability. Compared with other inert metals, magnesium alloys have significant advantages and broad application prospects in the field of bone regeneration.

View Article and Find Full Text PDF

The monitoring of the neuromuscular blockade is critical for patient's safety during and after surgery. The monitoring of neuromuscular blockade often requires the use of Train of Four (TOF) technique. During a TOF test two electrodes are attached to the ulnar nerve, and a series of four electric pulses are applied.

View Article and Find Full Text PDF

Scope: To assess the associations of dietary protein intake from different sources during pregnancy with maternal and umbilical cord plasma amino acid levels.

Methods And Results: The study includes 216 pregnant women and 39 newborns from the Tongji Birth Cohort in Wuhan, China. The study examines the levels of 21 amino acids in maternal and cord plasma samples using ultra-performance liquid chromatography with tandem mass spectrometry.

View Article and Find Full Text PDF

Background: The issue of hair growth on reconstructed ears has been a matter of concern for both patients and surgeons, despite the notable progress made in microtia reconstruction technology in recent times.

Objective: This study aims to present the practical implementation of long-pulsed 800-nm diode laser depilation technology in the field of auricular reconstruction. Furthermore, it seeks to establish a comprehensive and standardized protocol for utilizing lasers in the reconstruction of microtia ears.

View Article and Find Full Text PDF

Cellular senescence, a vulnerable state of growth arrest, has been regarded as a potential strategy to weaken the resistance of tumor cells, leading to dramatic improvements in treatment efficacy. However, a selective and efficient strategy for inducing local tumor cellular senescence has not yet been reported. Herein, piezoelectric catalysis is utilized to reduce intracellular NAD to NADH for local tumor cell senescence for the first time.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) possess the ability to self-renew and differentiate into multiple cell types, making them highly suitable for use as seed cells in tissue engineering. These can be derived from various sources and have been found to play crucial roles in several physiological processes, such as tissue repair, immune regulation, and intercellular communication. However, the limited capacity for cell proliferation and the secretion of senescence-associated secreted phenotypes (SASPs) pose challenges for the clinical application of MSCs.

View Article and Find Full Text PDF

Topological superconductors have drawn significant interest from the scientific community due to the accompanying Majorana fermions. Here, the discovery of electronic structure and superconductivity (SC) in high-entropy ceramics Ti Zr Nb Mo Ta C (x = 1 and 0.8) combined with experiments and first-principles calculations is reported.

View Article and Find Full Text PDF

Background: Higher dietary cholesterol intake during pregnancy increases risk of gestational diabetes mellitus (GDM). However, no studies have investigated interindividual variability in cholesterol metabolism and the association of genetics and diet on GDM.

Objective: ; To prospectively evaluate the joint association of cholesterol-rich dietary patterns and polymorphisms of genes coding for cholesterol metabolism pathway proteins with GDM.

View Article and Find Full Text PDF