Publications by authors named "Shu Guang Wang"

Base editing is preferable for bacterial gene inactivation without generating double-strand breaks, requiring homology recombination, or highly efficient DNA delivery capability. However, the potential of base editing is limited by the adjoined dependence on the editing window and protospacer adjacent motif. Herein, we report an unconstrained base-editing system to enable the inactivation of any genes of interest in bacteria.

View Article and Find Full Text PDF

Sulfide biomineralization is a microorganism-induced process for transforming the environmentally hazardous cadmium into useful resource utilization. This study successfully constructed cadmium sulfide nanoparticles-Rhodopseudomonas palustris (Bio-CdS NPs-R. palustris) hybrids.

View Article and Find Full Text PDF

Tetracycline (TC) and Cu(II) coexist commonly in various waters, which may infiltrate into the subterranean environment through runoff and leaching, resulting in substantial ecological risks. However, the underlying mechanisms why Cu(II) affects the transport of TC in porous media remain to be further explored and supported by more evidence, especially the role of complexation. In this study, the transport of TC with coexisting Cu(II) was comprehensively explored with column experiments and density functional theory (DFT) calculation.

View Article and Find Full Text PDF

Biological valorization of lignin, the second most abundant biopolymer on Earth, is an indispensable sector to build a circular economy and net-zero future. However, lignin is recalcitrant to bioupcycling, demanding innovative solutions. We report here the biological valorization of lignin-derived aromatic carbon to value-added chemicals without requesting extra organic carbon and freshwater via reprogramming the marine clade bacterium .

View Article and Find Full Text PDF

Capacitive deionization (CDI) is flourishing as an energy-efficient and cost-effective water desalination method. However, challenges such as electrode degradation and fouling have hindered the practical deployment of CDI technology. To address these challenges, the key point of our strategy is applying a hydrophilic coating composed of polyethylene glycol (PEG)-functionalized nano-TiO/polyvinylidene fluoride (PVDF) to the electrode interface (labeled as APPT electrode).

View Article and Find Full Text PDF

The formation of an internal fistula between the biliary system and the gastrointestinal tract is a rare condition with various etiologies, predominantly associated with recurrent chronic inflammation of the biliary system and tumors. Patients with this condition may lack specific clinical manifestations, presenting with symptoms such as abdominal pain, fever, jaundice, or may show no clinical signs at all. Common types of internal fistulas include cholecystoduodenal fistula, cholecystocolonic fistula, and choledochoduodenal fistula.

View Article and Find Full Text PDF

Rationale: Coagulation factor V deficiency is rare, and perioperative management of patients with this condition is particularly important, especially during major abdominal surgery. We present a case of a patient with pancreatic duct stones combined with coagulation factor V deficiency. We share our perioperative management experience.

View Article and Find Full Text PDF

Zn(II) is a necessary additive during antibiotic production and aquaculture, leading to the coexistence of Zn(II) and antibiotics in aquatic environment, especially in receiving waters of pharmaceutical and aquaculture wastewater. However, the roles of Zn(II) in the photochemical behavior of antibiotics are still not clear, which limits the understanding of the fate of antibiotic in nature. In this study, tetracycline (TC) was selected as typical antibiotic to evaluate the effect of Zn(II) on antibiotic photolysis.

View Article and Find Full Text PDF

The clade bacteria are of great significance in marine ecology and biogeochemical cycles, and they are potential microbial chassis for marine synthetic biology due to their versatile metabolic capabilities. Here, we adapted a CRISPR-Cas-based system, base editing, with the combination of nuclease-deactivated Cas9 and deaminase for clade bacteria. Taking the model roseobacter as an example, we achieved precise and efficient genome editing at single-nucleotide resolution without generating double-strand breaks or requesting donor DNAs.

View Article and Find Full Text PDF

Cadmium (Cd) pollution is regarded as a potent problem due to its hazard risks to the environment, making it crucial to be removed. Compared to the physicochemical techniques (e.g.

View Article and Find Full Text PDF

Phosphate solubilizing bacteria (PSB) has been considered an environmental-friendly phosphate fertilizer without cadmium (Cd) input into soils, but its possibility of Cd fixation in soil needs to be explored. Since direct inoculation results in a rapid decline of the population and activity, we immobilized Bacillus megaterium with maize straw biochar (B-PSB) and investigated its feasibility in remediating Cd-contaminated soil. Pot experiments showed that the application of B-PSB significantly ameliorated the growth of Brassica chinensis under Cd stress, with a fresh weight increased by 59.

View Article and Find Full Text PDF

The discharge of oily wastewater has increased dramatically and will bring serious environmental problems. In this work, a self-cleaning and anti-fouling g-CN/TiO/PVDF composite membrane was fabricated via the layer-by-layer approach. The surface of as-prepared composite membrane displayed a superhydrophilic and underwater superoleophobic behavior under irradiation with visible light.

View Article and Find Full Text PDF

Background: China has been using inactivated coronavirus disease 2019 (COVID-19) vaccines as primary series and booster doses to protect the population from severe to fatal COVID-19. We evaluated primary and booster vaccine effectiveness (VE) against Omicron BA.2 infection outcomes.

View Article and Find Full Text PDF

The evolution and dissemination of antibiotic resistance genes (ARGs) are prompting severe health and environmental issues. While environmental processes, e.g.

View Article and Find Full Text PDF

Membrane fouling and the trade-off between membrane permeability and selectivity restrict the potential applications of membrane filtration for water treatment. ZIF-8 was found having great permeability and antibiofouling performance, but with issue on particle aggregation makes it difficult to achieve high ZIFs loading and fabricate a defect-free molecular sieving membrane in previous research. In this study, we formed a scalable antibiofouling surface with improved permeability and fouling resistance on a PEI-ZIF-PAA membrane using a layer-by-layer assembly technique.

View Article and Find Full Text PDF

Cyanobacteria can directly convert carbon dioxide (CO) at the atmospheric level to biofuels, value-added chemicals and food products, making them ideal candidates to alleviate global climate change. Despite decades-long pioneering successes, the development of genome-editing tools, especially the CRISPR-Cas-based approaches, seems to lag behind other microbial chassis, slowing down the innovations of cyanobacteria. Here, we adapted and tailored base editing for cyanobacteria based on the CRISPR-Cas system and deamination.

View Article and Find Full Text PDF

Global warming is approaching an alarming level due to the anthropogenic emission of carbon dioxide (CO). To overcome the challenge, the reliance on fossil fuels needs to be alleviated, and a significant amount of CO needs to be sequestrated from the atmosphere. In this endeavor, carbon-neutral and carbon-negative biotechnologies are promising ways.

View Article and Find Full Text PDF

Sugar metabolism by Saccharomyces cerevisiae produces ample amounts of CO2 under both aerobic and anaerobic conditions. High solubility of CO2 in fermentation media, contributing to enjoyable sensory properties of sparkling wine and beers by S. cerevisiae, might affect yeast metabolism.

View Article and Find Full Text PDF

Pharmaceuticals are necessary to be removed from environment. Herein TiO incorporated biochar made from pyrolysis of agricultural wastes was encapsulated into chitosan to obtain a novel hydrogel beads. This hydrogel beads executed a dual role as both adsorbent and sonocatalyst, which proved to be suitable for the removal of antibiotic ciprofloxacin (CIP) from water.

View Article and Find Full Text PDF

Inoculation of phosphate-solubilizing bacteria (PSB) is a sustainable approach to increase the available P content in soils for crop production. This application, however, is constrained by the low survival rate of PSB in the field. Biochar, a carbon-rich biomaterial with a well-developed porous structure, has recently emerged as an appealing option to maintain the population size of inoculants in the soil.

View Article and Find Full Text PDF

Background: Converting carbon dioxide (CO) into value-added chemicals using engineered cyanobacteria is a promising strategy to tackle the global warming and energy shortage issues. However, most cyanobacteria are autotrophic and use CO as a sole carbon source, which makes it hard to compete with heterotrophic hosts in either growth or productivity. One strategy to overcome this bottleneck is to introduce sugar utilization pathways to enable photomixotrophic growth with CO and sugar (e.

View Article and Find Full Text PDF

Microplastics (MPs) are ubiquitous in drinking water and pose potential threats to human health. Despite increasingly attentions on the toxicity of MPs, the deleterious effects of MPs after chlorine disinfection, which might be a more accessible form of MPs, has rarely been considered. Here, we first treated pristine polystyrene microplastics (PS-MPs) with chlorine to simulate the reactions that occur during drinking water treatment, and investigated and compared the cytotoxicity of chlorinated PS-MPs to those of pristine PS-MPs.

View Article and Find Full Text PDF

Wastewater treatment plants are suspected to be significant point sources of microplastic and nanoplastic particles (NPs) in the environment. As one of the main wastewater treatment processes, advanced oxidation processes (AOPs) may change the physicochemical properties of NPs and further affect their migration. However, limited information is known about the environmental fate of NPs after AOP treatment.

View Article and Find Full Text PDF

Selenium (Se) is an essential trace element in the human body. Se-enriched agricultural products, obtained by applying Se fertilizer, are important sources of Se supplement. However, Se fertilizer may cause a series of environmental problems.

View Article and Find Full Text PDF