Publications by authors named "Shu Chun Chu"

This study provided an intra-cavity method for the selective generation of all kinds of quasi-Mathieu beams. The method employed L-type digital lasers to selectively generate the Fourier spectrum of the gaussian-modulated angular Mathieu function. The lasing field then underwent a Fourier-transform with an extra-cavity lens, and was converted into quasi-Mathieu beams after passing through an axicon.

View Article and Find Full Text PDF

This research proposed a simple method to design the projected phase boundary of the SLM (spatial light modulator) of the digital laser for the generation of a structure light field of geometric shape. In the proposed method, the phase boundary of the digital laser was designed to match the convolution field of the specified geometric structure field and Gaussian field instead of matching the specified geometric structure field. The phase boundary design suppressed the light reflected from the SLM of a high-inclination angle that is difficult to achieve stable oscillation in the laser resonator.

View Article and Find Full Text PDF

This paper presents a design for a high-efficiency, low-beam headlamp with Oliker's ellipses technology [Computing Lett.2, 29 (2006)1574-040410.1163/157404006777491981].

View Article and Find Full Text PDF

A new type of laser system, known as a digital laser, was proposed in 2013. Many well-known laser beams with known analytical forms have been successfully generated in digital lasers. However, for a light field that does not have an analytical form, such as a multi-point light field or a light field with an arbitrary lateral distribution, how to generate such a light field from a digital laser has not been explored.

View Article and Find Full Text PDF

This study proposes a method of dynamically controlling the interference pattern of surface plasmon polaritons (SPPs) within a four-slit structure by changing the phase difference between multiple-incident Gaussian beams. The theoretical analysis of the controlling mechanism of the SPP interference field and the numerical simulation of the generation and movement of both one-dimensional and two-dimensional SPP interference fields are provided. In addition, through simulation, this study demonstrates using the controllable two-dimensional SPP interference bright spots field for manipulating particles in static liquids.

View Article and Find Full Text PDF

This study proposes a method to achieve excitation of surface plasmon polaritons (SPPs) with tunable directions and intensity ratios on a designed two thin slit structure by the phase control of dual fundamental Gaussian beams. Simply modulating the phase difference between two incident fundamental Gaussian beams (i.e.

View Article and Find Full Text PDF

The one-time ray-tracing optimization method is a fast way to design LED illumination systems [Opt. Express22, 5357 (2014)10.1364/OE.

View Article and Find Full Text PDF

This study details a one-time ray-tracing optimization method for the optimization of LED illumination systems [S.-C. Chu and H.

View Article and Find Full Text PDF

Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)].

View Article and Find Full Text PDF

This paper details the design of a ray-leakage-free sawtooth-shaped planar lightguide solar concentrator. The concentrator combines Unger's dimpled planar lightguide solar concentrators [1] with a prism array dimpled planar lightguide solar concentrator. The use of a sawtooth-shaped boundary on the planar lightguide prevents leakages of the guiding ray after multiple reflections in the lightguide.

View Article and Find Full Text PDF

A liquid crystal (LC) device, called a "q-plate" (QP), which is based on axially symmetric photo-alignment was investigated. The electrically tunable LC QP device could be modulated to control the shape and polarization of a linearly polarized Gaussian laser beam that propagated through it. The intensity profile and polarization distribution were simulated by MATLAB and 1D-DIMOS.

View Article and Find Full Text PDF

We report a simple method for generating cylindrical vector beams directly from laser-diode (LD)-pumped microchip solid-state lasers by using dual end-pumping beams. Radially as well as azimuthally polarized vector field emissions have been generated from the common c-cut Nd:GdVO4 laser cavity merely by controlling the focus positions of orthogonally polarized LD off-axis pump beams. Hyperbolically polarized vector fields have also been observed, in which the cylindrical symmetry of vector fields is broken.

View Article and Find Full Text PDF

In this study, a Fresnel lens with radial and azimuthal liquid crystal (LC) alignments in the odd and even zones was fabricated using the photoalignment technique based on an azo dye doped in LC cells. The lens has approximately 35% focusing efficiency as determined using a linearly polarized probe beam. In addition, the lens converts the input linear polarization into axially symmetrical polarization at the focal plane.

View Article and Find Full Text PDF

This work demonstrates the electrical tuning of laser beam shape using an axially symmetric dye-dope liquid crystal (ASDDLC) device that is fabricated using a photo-alignment method. Various beam shapes can be obtained by linearly polarized Gaussian laser beams through an ASDDLC device under various applied voltages. The far-field intensity patterns generated by laser beams of selected shapes under various applied voltages are simulated, and the results are consistent with experiment.

View Article and Find Full Text PDF

This study reports the first systematic approach to the excitation of all high-order Hermite-Gaussian modes (HGMs) in end-pumped solid-state lasers. This study uses a metal-wire-inserted laser resonator accompanied with the "off axis pumping" approach. This study presents numerical analysis of the excitation of HGMs in end-pumped solid-state lasers and experimentally generated HGM patterns.

View Article and Find Full Text PDF

We demonstrate the breakup of spatial-polarization entangled lasing patterns, which possess vector phase singularities, and the resultant dynamic instabilities featuring chaotic oscillations. The frequency splitting between a pair of Ince-Gauss (IG) lasing modes, originally forming a coherent entanglement state, and a self-excited additional nonorthogonal IG mode through a new class of transverse effect of self-injection pattern seeding, is shown to result in modal-interference-induced modulation at the beat frequency, leading to chaotic oscillations.

View Article and Find Full Text PDF

This study reports a possible first systematic approach to the selective excitations of all Mathieu-Gauss modes (MGMs) in end-pumped solid-state lasers with a new kind of axicon-based stable laser resonator. The study classifies MGMs into two categories, and explores and verifies the approach to excite each MGM category using numerical simulations. Controlling both the "cavity mode gain" and the "cavity conical asymmetry" of the axicon-based stable laser resonator achieves the proposed selective MGM-excitation approach.

View Article and Find Full Text PDF

We demonstrate vortex array-beam generations from a thin-slice, wide-aperture, solid-state laser with laser-diode end-pumping. Radial and rectangular vortex arrays were found to be formed in a controlled fashion with symmetric and asymmetric pump-beam profiles, respectively. Most of these vortices exhibited single-frequency oscillations arising from a spontaneous process of transverse mode locking of degenerate or nearly degenerate modes assisted by the laser nonlinearity.

View Article and Find Full Text PDF

This paper proposes a new scheme for generating vortex laser beams from a laser. The proposed system consists of a Dove prism embedded in an unbalanced Mach-Zehnder interferometer configuration. This configuration allows controlled construction of p x p vortex array beams from Ince-Gaussian modes, IG(e) (p,p) modes.

View Article and Find Full Text PDF

We report selective excitations of higher-order Hermite-Gaussian and Ince-Gaussian (IG) modes in a laser-diode-pumped microchip solidstate laser and controlled generation of corresponding higher-order and multiple optical vortex beams of different shapes using an astigmatic mode converter (AMC). Simply changing the pump-beam diameter, shape, and lateral off-axis position of the tight pump beam focus on the laser crystal within a microchip semispherical cavity can produce the desired optical vortex beams in a well controlled manner. Pattern changes featuring different IG and HG modes obtained by rotating the AMC are also demonstrated.

View Article and Find Full Text PDF

This study demonstrates successive higher-order Hermite-Gaussian (HG(0,m)) mode operations in a microchip solid-state laser with a controlled off-axis laser diode (LD) pumping and generation of the corresponding doughnutlike laser beam of tunable ring diameter and orbital angular momentum, by experimentally focusing a Hermite-Gaussian mode (HGM) lasing beam into an astigmatic mode converter (AMC) with a mode-matching lens. Based on the successful generation of stable doughnutlike vortex beams by combining the LD off-axis pumping of microchip lasers and an AMC, this study proposes a design for a compact, solid doughnutlike vortex laser beam generator that combines three elements (i.e.

View Article and Find Full Text PDF

This study report a first systematic approach to the selective excitations of all Ince-Gaussian modes (IGMs) in end-pumped solid-state lasers. The proposed Ince-Gaussian mode excitation mechanism is based on the "mode-gain control" concept. This study classifies IGMs into three categories, explores and verifies approach to excite each IGM category using numerical simulation.

View Article and Find Full Text PDF

This study proposes a three-lens configuration for generating a stable donutlike vortex laser beam with controlled Ince-Gaussian mode (IGM) operation in the model of laser-diode (LD)-pumped solid-state lasers. Simply controlling the lateral off-axis position of the pump beam's focus on the laser crystal can generate a desired donutlike vortex beam from the proposed simple and easily made three-lens configuration, a proposed astigmatic mode converter assembled into one body with a concave-convex laser cavity.

View Article and Find Full Text PDF

Various single-frequency Ince-Gaussian mode oscillations have been achieved in laser-diode-pumped microchip solid-state lasers, including LiNdP(4)O(12) (LNP) and Nd:GdVO(4), by adjusting the azimuthal symmetry of the short laser resonator. Ince-Gaussian modes formed by astigmatic pumping have been reproduced by numerical simulation.

View Article and Find Full Text PDF