Publications by authors named "Shtrichman R"

Purpose: Bronchial hyperresponsiveness (BHR), a hallmark of bronchial asthma, is typically diagnosed through a methacholine inhalation test followed by spirometry, known as the methacholine challenge test (MCT). While spirometry relies on proper patients' cooperation and precise execution of forced breathing maneuvers, we conducted a comparative analysis with the portable nanomaterial-based sensing device, SenseGuard™, to non-intrusively assess tidal breathing parameters.

Materials And Methods: In this prospective study, 37 adult participants with suspected asthma underwent sequential spirometry and SenseGuard™ measurements after inhaling increasing methacholine doses.

View Article and Find Full Text PDF

Purpose: Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is a complication of COPD that typically necessitates intensified treatment and hospitalization. It is linked to higher morbidity, mortality and healthcare spending. Assessment of therapy response for AECOPD is difficult due to the variability of symptoms and limitations in current measures.

View Article and Find Full Text PDF

Background: Acute postoperative pain delays recovery and increases morbidity and mortality. Opioid therapy is effective but is accompanied by adverse reactions. Patient-controlled analgesia (PCA) enables self-administration of analgesics.

View Article and Find Full Text PDF

Background: Medication nonadherence is a major problem in health care, imposing poor clinical outcomes and a heavy financial burden on all stakeholders. Current methods of medication adherence assessment are severely limited: they are applied only periodically, do not relate to actual pill intake, and suffer from patient bias due to errors, misunderstanding, or intentional nonadherence. ReX is an innovative medication management system designed to address poor patient adherence and enhance patient engagement with their therapy.

View Article and Find Full Text PDF

Background: Acute postoperative pain delays recovery and increases morbidity and mortality. Traditional administration of postoperative analgesics by nurses is often inefficient. The present study evaluated the safety, efficacy, and usability of a novel, patient-controlled analgesic dispenser, the PCoA Acute.

View Article and Find Full Text PDF

Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from "data-to-knowledge-to-innovation," a crucial missing step in the current era is, however, our limited understanding of biological and clinical contexts associated with data. Prominent among the emerging remedies to this challenge are the gene set enrichment tools.

View Article and Find Full Text PDF

Cell therapies aim to repair the mechanisms underlying disease initiation and progression, achieved through trophic effect or by cell replacement. Multiple cell types can be utilized in such therapies, including stem, progenitor or primary cells. This review covers the current state of cell therapies designed for the prominent disorders, including cardiovascular, neurological (Parkinson's disease, amyotrophic lateral sclerosis, stroke, spinal cord injury), autoimmune (Type 1 diabetes, multiple sclerosis, Crohn's disease), ophthalmologic, renal, liver and skeletal (osteoarthritis) diseases.

View Article and Find Full Text PDF

Extracellular matrix (ECM) has been utilized as a biological scaffold for tissue engineering applications in a variety of body systems, due to its bioactivity and biocompatibility. In the current study we developed a modified protocol for the efficient and reproducible derivation of mesenchymal progenitor cells (MPCs) from human embryonic stem cells as well as human induced pluripotent stem cells (hiPSCs) originating from hair follicle keratinocytes (HFKTs). ECM was produced from these MPCs and characterized in comparison to adipose mesenchymal stem cell ECM, demonstrating robust ECM generation by the excised HFKT-iPSC-MPCs.

View Article and Find Full Text PDF

Adenosine-to-inosine (A-to-I) RNA editing is a post-transcriptional, site-specific modification process that is catalyzed by Adenosine Deaminase Acting on RNA (ADAR) gene family members. Since ADARs act on double-stranded RNA, most A-to-I editing occurs within repetitive elements, particularly Alu elements, as the result of the inherent property of these sequences to fold and form double strands. ADAR1-mediated A-to-I RNA editing was recently implicated in the regulation of human embryonic stem cells (hESCs).

View Article and Find Full Text PDF

LifeMap Discovery™ provides investigators with an integrated database of embryonic development, stem cell biology and regenerative medicine. The hand-curated reconstruction of cell ontology with stem cell biology; including molecular, cellular, anatomical and disease-related information, provides efficient and easy-to-use, searchable research tools. The database collates in vivo and in vitro gene expression and guides translation from in vitro data to the clinical utility, and thus can be utilized as a powerful tool for research and discovery in stem cell biology, developmental biology, disease mechanisms and therapeutic discovery.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) have great potential as a robust source of progenitors for regenerative medicine. The novel technology also enables the derivation of patient-specific cells for applications to personalized medicine, such as for personal drug screening and toxicology. However, the biological characteristics of iPSCs are not yet fully understood and their similarity to human embryonic stem cells (hESCs) is still unresolved.

View Article and Find Full Text PDF

Post-transcriptional events play an important role in human development. The question arises as to whether Adenosine to Inosine RNA editing, catalyzed by the ADAR (Adenosine Deaminase acting on RNA) enzymes, differs in human embryogenesis and in adulthood. We tested the editing of various target genes in coding (FLNA, BLCAP, CYFIP2) and non-coding sequences at their Alu elements (BRCA1, CARD11, RBBP9, MDM4, FNACC), as well as the transcriptional levels of the ADAR1 enzymes.

View Article and Find Full Text PDF

Sudden cardiac death caused by ventricular arrhythmias is a disastrous event, especially when it occurs in young individuals. Among the five major arrhythmogenic disorders occurring in the absence of a structural heart disease is catecholaminergic polymorphic ventricular tachycardia (CPVT), which is a highly lethal form of inherited arrhythmias. Our study focuses on the autosomal recessive form of the disease caused by the missense mutation D307H in the cardiac calsequestrin gene, CASQ2.

View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSCs) represent an ideal cell source for future cell therapy and regenerative medicine. However, most iPSC lines described to date have been isolated from skin fibroblasts or other cell types that require harvesting by surgical intervention. Because it is desirable to avoid such intervention, an alternative cell source that can be readily and noninvasively isolated from patients and efficiently reprogrammed, is required.

View Article and Find Full Text PDF

Adenosine to Inosine (A-to-I) RNA editing is a site-specific modification of RNA transcripts, catalyzed by members of the ADAR (Adenosine Deaminase Acting on RNA) protein family. RNA editing occurs in human RNA in thousands of different sites. Some of the sites are located in protein-coding regions but the majority is found in non-coding regions, such as 3'UTRs, 5'UTRs and introns - mainly in Alu elements.

View Article and Find Full Text PDF

In view of the therapeutic potential of cardiomyocytes derived from induced pluripotent stem (iPS) cells (iPS-derived cardiomyocytes), in the present study we investigated in iPS-derived cardiomyocytes, the functional properties related to [Ca(2+) ](i) handling and contraction, the contribution of the sarcoplasmic reticulum (SR) Ca(2+) release to contraction and the b-adrenergic inotropic responsiveness. The two iPS clones investigated here were generated through infection of human foreskin fibroblasts (HFF) with retroviruses containing the four human genes: OCT4, Sox2, Klf4 and C-Myc. Our major findings showed that iPS-derived cardiomyocytes: (i) express cardiac specific RNA and proteins; (ii) exhibit negative force-frequency relations and mild (compared to adult) post-rest potentiation; (iii) respond to ryanodine and caffeine, albeit less than adult cardiomyocytes, and express the SR-Ca(2+) handling proteins ryanodine receptor and calsequestrin.

View Article and Find Full Text PDF

The host interferon (IFN) system plays an important role in protection against microbial infections. Salmonella enterica serovar Typhimurium is highly virulent in the mouse model, whereas mutants that lack DNA adenine methylase (Dam(-)) are highly attenuated and elicit fully protective immune responses against murine typhoid fever. We examined the expression of IFN-responsive genes in several mouse tissues following infection with Dam(+) or Dam(-) Salmonella.

View Article and Find Full Text PDF

Gamma interferon (IFN-gamma) is an important cytokine in the host defense against infection by viral and microbial pathogens. IFN-gamma induces a variety of physiologically significant responses that contribute to immunity. Treatment of animal cells with IFN-gamma or infection with viral or microbial pathogens leads to changes in the level of expression of several target genes as revealed by DNA microarray analyses.

View Article and Find Full Text PDF

Adenovirus E4orf4 protein has been shown to induce p53-independent, protein phosphatase 2A (PP2A)-dependent apoptosis in transformed cells. Furthermore, E4orf4 also induces toxicity in Saccharomyces cerevisiae in a PP2A-dependent manner (D. Kornitzer and T.

View Article and Find Full Text PDF

SR proteins purified from uninfected HeLa cells inhibit adenovirus IIIa pre-mRNA splicing by binding to the intronic IIIa repressor element (3RE). In contrast, SR proteins purified from late adenovirus-infected cells are functionally inactivated as splicing repressor proteins by a virus-induced dephosphorylation. We have shown that the adenovirus E4-ORF4 protein, which binds the cellular protein phos phatase 2A (PP2A) and activates IIIa splicing in vitro and in vivo, induces SR protein dephosphorylation.

View Article and Find Full Text PDF

Adenovirus E4orf4 protein has been shown to induce transformed cell-specific, protein phosphatase 2A-dependent, and p53-independent apoptosis. It has been further reported that the E4orf4 apoptotic pathway is caspase-independent in CHO cells. Here, we show that E4orf4 induces caspase activation in the human cell lines H1299 and 293T.

View Article and Find Full Text PDF

Adenovirus E4orf4 protein is a multifunctional viral regulator, which is involved in down regulation of virally-modulated signal transduction, in control of alternative splicing of viral mRNAs, and in induction of apoptosis in transformed cells. It has been previously shown that E4orf4 interacts with protein phosphatase 2A through the phosphatase Balpha subunit. It was further shown that PP2A is required for performing the various E4orf4 functions.

View Article and Find Full Text PDF

We previously have shown that adenovirus type 5 E4orf4 protein associates with protein phosphatase 2A (PP2A) and induces apoptosis in transformed cells in a p53-independent manner. Here we show that the interaction between E4orf4 and PP2A is required for induction of apoptosis by the viral protein. This conclusion is supported by a mutation analysis of E4orf4 protein, showing a correlation between the ability to bind PP2A and to induce apoptosis, and by the observation that transfection of an antisense construct of the PP2A-B55 subunit reduces expression of the PP2A-B55 subunit and inhibits induction of apoptosis by E4orf4, but not by p53.

View Article and Find Full Text PDF

Adenovirus type 5 E4 open reading frame 4 (E4orf4) protein has been previously shown to counteract transactivation of the junB and c-fos genes by cyclic AMP plus E1A protein and to interact with protein phosphatase 2A (PP2A). Here, we show that the wild-type E4orf4 protein induces apoptosis in the E1A-expressing 293 cells, in NIH 3T3 cells transformed with v-Ras, and in the lung carcinoma cell line H1299. The induction of apoptosis is not accompanied by enhanced levels of p53 in 293 cells and occurs in the absence of p53 in H1299 cells, indicating involvement of a p53-independent pathway.

View Article and Find Full Text PDF