Indian science academia has a dearth of women researchers at all levels. Not only are they under-represented, but they are also under-highlighted, under-mentored and overlooked for awards, grants and other career-advancing steps. To effectively address this problem and devise a solution for the inequity, we need data on the proportion of women faculty across multiple STEM institutions.
View Article and Find Full Text PDFAnterior cingulate cortex mediates the flexible updating of an animal's choice responses upon rule changes in the environment. However, how anterior cingulate cortex entrains motor cortex to reorganize rule representations and generate required motor outputs remains unclear. Here, we demonstrate that chemogenetic silencing of the terminal projections of cingulate cortical neurons in secondary motor cortex in the rat disrupts choice performance in trials immediately following rule switches, suggesting that these inputs are necessary to update rule representations for choice decisions stored in the motor cortex.
View Article and Find Full Text PDFAnimals need to optimize the efficacy of memory retrieval to adapt to environmental circumstances for survival. The recent development of memory engram labeling technology allows a precise investigation of the processes associated with the recall of a specific memory. Here, we show that engram cell excitability is transiently increased following memory reactivation.
View Article and Find Full Text PDFRecent studies identified neuronal ensembles and circuits that hold specific memory information (memory engrams). Memory engrams are retained under protein synthesis inhibition-induced retrograde amnesia. These engram cells can be activated by optogenetic stimulation for full-fledged recall, but not by stimulation using natural recall cues (thus, amnesia).
View Article and Find Full Text PDFHippocampal CA3 neurons form synapses with CA1 neurons in two layers, stratum oriens (SO) and stratum radiatum (SR). Each layer develops unique synaptic properties but molecular mechanisms that mediate these differences are unknown. Here, we show that SO synapses normally have significantly more mushroom spines and higher-magnitude long-term potentiation (LTP) than SR synapses.
View Article and Find Full Text PDFBasolateral amygdala (BLA) principal cells are capable of driving and antagonizing behaviors of opposing valence. BLA neurons project to the central amygdala (CeA), which also participates in negative and positive behaviors. However, the CeA has primarily been studied as the site for negative behaviors, and the causal role for CeA circuits underlying appetitive behaviors is poorly understood.
View Article and Find Full Text PDFSynaptic target specificity, whereby neurons make distinct types of synapses with different target cells, is critical for brain function, yet the mechanisms driving it are poorly understood. In this study, we demonstrate Kirrel3 regulates target-specific synapse formation at hippocampal mossy fiber (MF) synapses, which connect dentate granule (DG) neurons to both CA3 and GABAergic neurons. Here, we show Kirrel3 is required for formation of MF filopodia; the structures that give rise to DG-GABA synapses and that regulate feed-forward inhibition of CA3 neurons.
View Article and Find Full Text PDFUnlabelled: We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.
View Article and Find Full Text PDFLayer 1 of the neocortex is sparsely populated with neurons and heavily innervated by fibers from lower layers and proximal and distal brain regions. Understanding the potential functions of this layer requires a comprehensive understanding of its cellular and synaptic organization. We therefore performed a quantitative study of the microcircuitry of neocortical layer 1 (L1) in the somatosensory cortex in juvenile rats (P13-P16) using multi-neuron patch-clamp and 3D morphology reconstructions.
View Article and Find Full Text PDF