Publications by authors named "Shruthi Naik"

Sarcomas are a rare and highly diverse group of malignancies of mesenchymal origin. While sarcomas are generally considered resistant to immunotherapy, recent studies indicate subtype-specific differences in clinical response to checkpoint inhibitors (CPIs) that are associated with distinct immune phenotypes present in sarcoma subtypes. Oncolytic viruses (OVs) are designed to selectively infect and kill tumor cells and induce intratumoral immune infiltration, enhancing immunogenicity and thereby sensitizing tumors to immunotherapy.

View Article and Find Full Text PDF
Article Synopsis
  • Osteosarcoma is a serious type of bone cancer that mainly affects kids and young adults, and it can be hard to treat with standard methods.
  • Researchers tested a new treatment called VSV-IFNβ-NIS on dogs with the same cancer to see if it could help improve survival rates.
  • The treatment seemed safe and showed promise, as about 35% of the treated dogs lived longer, and they also had signs of strong immune responses against the cancer.
View Article and Find Full Text PDF
Article Synopsis
  • Osteosarcoma is a serious bone cancer that mostly affects kids, teens, and young adults, and even with treatment, some patients get worse.
  • A new treatment using a special virus called VSV-IFNβ-NIS was tested on dogs with this type of cancer before they had surgery, and it showed promising results.
  • The treatment was safe, helped some dogs live longer, and boosted their immune systems to fight cancer better.
View Article and Find Full Text PDF

Clinical success with intravenous (IV) oncolytic virotherapy (OV) has to-date been anecdotal. We conducted a phase 1 clinical trial of systemic OV and investigated the mechanisms of action in responding patients. A single IV dose of vesicular stomatitis virus (VSV) interferon-β (IFN-β) with sodium iodide symporter (NIS) was administered to patients with relapsed/refractory hematologic malignancies to determine safety and efficacy across 4 dose levels (DLs).

View Article and Find Full Text PDF

Neutralizing antibodies are key determinants of protection from future infection, yet well-validated high-throughput assays for measuring titers of SARS-CoV-2-neutralizing antibodies are not generally available. Here, we describe the development and validation of IMMUNO-COV v2.0, a scalable surrogate virus assay, which titrates antibodies that block infection of Vero-ACE2 cells by a luciferase-encoding vesicular stomatitis virus displaying SARS-CoV-2 spike glycoproteins (VSV-SARS2-Fluc).

View Article and Find Full Text PDF

We here describe the development and validation of IMMUNO-COV™, a high-throughput clinical test to quantitatively measure SARS-CoV-2-neutralizing antibodies, the specific subset of anti-SARS-CoV-2 antibodies that block viral infection. The test measures the capacity of serum or purified antibodies to neutralize a recombinant Vesicular Stomatitis Virus (VSV) encoding the SARS-CoV-2 spike glycoprotein. This recombinant virus (VSV-SARS-CoV-2-S-Δ19CT) induces fusion in Vero cell monolayers, which is detected as luciferase signal using a dual split protein (DSP) reporter system.

View Article and Find Full Text PDF

Osteosarcoma is the most common primary tumor of bone. Osteosarcomas are rare in humans, but occur more commonly in dogs. A comparative approach to studying osteosarcoma has highlighted many clinical and biologic aspects of the disease that are similar between dogs and humans; however, important species-specific differences are becoming increasingly recognized.

View Article and Find Full Text PDF

Objective: The objective of this study was to determine the prevalence of self-care practices in the urban slums of Bengaluru among diabetes and also to assess their sociodemographic risk factors.

Materials And Methods: A cross-sectional study was done in the two slums of Bengaluru comprising 163 diabetes patients. The prevalence of self-care practices and their sociodemographic risk was analyzed.

View Article and Find Full Text PDF

Clinical translation of intravenous therapies to treat disseminated or metastatic cancer is imperative. Comparative oncology, the evaluation of novel cancer therapies in animals with spontaneous cancer, can be utilized to inform and accelerate clinical translation. Preclinical murine studies demonstrate that single-shot systemic therapy with a vesicular stomatitis virus (VSV)-IFNβ-NIS, a novel recombinant oncolytic VSV, can induce curative remission in tumor-bearing mice.

View Article and Find Full Text PDF

Vesicular stomatitis virus (VSV) is a negative-stranded RNA virus that naturally causes disease in livestock including horses, cattle and pigs. The two main identified VSV serotypes are New Jersey (VSNJV) and Indiana (VSIV). VSV is a rapidly replicating, potently immunogenic virus that has been engineered to develop novel oncolytic therapies for cancer treatment.

View Article and Find Full Text PDF

Tumor-selective oncolytic vesicular stomatitis viruses (VSVs) are being evaluated in clinical trials. Here, we report that the MPC-11 murine plasmacytoma model is so extraordinarily susceptible to oncolytic VSVs that a low dose of virus leads to extensive intratumoral viral replication, sustained viremia, intravascular coagulation, and a rapidly fatal tumor lysis syndrome (TLS). Rapid softening, shrinkage and hemorrhagic necrosis of flank tumors was noted within 1-2 days after virus administration, leading to hyperkalemia, hyperphosphatemia, hypocalcemia, hyperuricemia, increase in plasma cell free DNA, lymphopenia, consumptive coagulopathy, increase in fibrinogen degradation products, decreased liver function tests, dehydration, weight loss, and euthanasia or death after 5-8 days.

View Article and Find Full Text PDF

Oncolytic VSV-IFNβ-NIS is selectively destructive to tumors. Here, we present the IND enabling preclinical rodent studies in support of clinical testing of vesicular stomatitis virus (VSV) as a systemic therapy. Efficacy studies showed dose-dependent tumor regression in C57BL/KaLwRij mice bearing syngeneic 5TGM1 plasmacytomas after systemic VSV administration.

View Article and Find Full Text PDF

Systemically administered oncolytic viruses have the ability to cause tumor destruction through the expansion and coalescence of intratumoral infectious centers. Efficacy is therefore dependent upon both the density and intratumoral distribution of virus-infected cells achieved after initial virus infusion, and delivery methods are being developed to enhance these critical parameters. However, the three-dimensional (3D) mapping of intratumoral infectious centers is difficult using conventional immunohistochemical methodology, requiring painstaking 3D reconstruction of numerous sequential stained tumor sections, with no ability to study the temporal evolution of spreading infection in a single animal.

View Article and Find Full Text PDF

VSV-IFNβ-NIS is a novel recombinant oncolytic vesicular stomatitis virus (VSV) with documented efficacy and safety in preclinical murine models of cancer. To facilitate clinical translation of this promising oncolytic therapy in patients with disseminated cancer, we are utilizing a comparative oncology approach to gather data describing the safety and efficacy of systemic VSV-IFNβ-NIS administration in dogs with naturally occurring cancer. In support of this, we executed a dose-escalation study in purpose-bred dogs to determine the maximum tolerated dose (MTD) of systemic VSV-hIFNβ-NIS, characterize the adverse event profile, and describe routes and duration of viral shedding in healthy, immune-competent dogs.

View Article and Find Full Text PDF

Simple, inductive mathematical models of oncolytic virotherapy are needed to guide protocol design and improve treatment outcomes. Analysis of plasmacytomas regressing after a single intravenous dose of oncolytic vesicular stomatitis virus in myeloma animal models revealed that intratumoral virus spread was spatially constrained, occurring almost exclusively through radial expansion of randomly distributed infectious centers. From these experimental observations we developed a simple model to calculate the probability of survival for any cell within a treated tumor.

View Article and Find Full Text PDF

Measles virus (MV) entry requires at least 2 viral proteins, the hemagglutinin (H) and fusion (F) proteins. We describe the rescue and characterization of a measles virus with a specific mutation in the stalk region of H (I98A) that is able to bind normally to cells but infects at a lower rate than the wild type due to a reduction in fusion triggering. The mutant H protein binds to F more avidly than the parent H protein does, and the corresponding virus is more sensitive to inhibition by fusion-inhibitory peptide.

View Article and Find Full Text PDF

Background: The use of oncolytic viruses for treatment of cancer marks a significant alteration in the battle between host and virus. Viruses are confronted by cellular innate immune responses and contain an armamentarium of immunomodulatory proteins that suppress innate immunity. Tumorigenesis can result in impairment of innate immune responses.

View Article and Find Full Text PDF

Multiple myeloma is a radiosensitive malignancy that is currently incurable. Here, we generated a novel recombinant vesicular stomatitis virus [VSV(Delta51)-NIS] that has a deletion of methionine 51 in the matrix protein and expresses the human sodium iodide symporter (NIS) gene. VSV(Delta51)-NIS showed specific oncolytic activity against myeloma cell lines and primary myeloma cells and was able to replicate to high titers in myeloma cells in vitro.

View Article and Find Full Text PDF

The family of G protein-coupled receptors that includes receptors for motilin, ghrelin, and growth hormone secretagogue has substantial potential importance as drug targets. Understanding of the molecular basis of hormone binding and receptor activation should provide insights that are helpful in the development of such drugs. We previously examined the unique second extracellular loop domain of the motilin receptor, identifying key epitopes in perimembranous locations at each end of this long loop (Matsuura, B.

View Article and Find Full Text PDF