Lipid nanoparticles (LNPs) have emerged as the dominant platform for RNA delivery, based on their success in the COVID-19 vaccines and late-stage clinical studies in other indications. However, we and others have shown that LNPs induce severe inflammation, and massively aggravate pre-existing inflammation. Here, using structure-function screening of lipids and analyses of signaling pathways, we elucidate the mechanisms of LNP-associated inflammation and demonstrate solutions.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) make up a growing class of targeted therapeutics with important applications in cancer treatment. ADCs are highly modular in nature and thus can be engineered to target any cancer type, but their efficacy is strongly influenced by the specific choice of payload, antibody, and target cell. Considering the number of possible antibody-payload combinations, ADC development would benefit from an efficient method to narrow the number of ADC compositions to those with the highest and most universal potency prior to assessing pharmacokinetics and pharmacodynamics in animal models.
View Article and Find Full Text PDFSurface plasmon resonance and biolayer interferometry are two common real-time and label-free assays that quantify binding events by providing kinetic parameters. There is increased interest in using these techniques to characterize whole virus-ligand interactions, as the methods allow for more accurate characterization than that of a viral subunit-ligand interaction. This review aims to summarize and evaluate the uses of these technologies specifically in virus-ligand and virus-like particle-ligand binding cases to guide the field towards studies that apply these robust methods for whole virus-based studies.
View Article and Find Full Text PDFProtein abnormalities are the major cause of neurodegenerative diseases such as spinocerebellar ataxia (SCA). Protein misfolding and impaired degradation leads to the build-up of protein aggregates inside the cell, which may further cause cellular degeneration. Reducing levels of either the soluble misfolded form of the protein or its precipitated aggregate, even marginally, could significantly improve cellular health.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small non-coding RNAs that are known to control mRNA translation. Most miRNAs are transcribed from specific genes with well-defined promoters located throughout the genome. The mechanisms that control miRNA expression under normal and pathological conditions are not yet understood clearly.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are known to repress translation by binding to the 3'UTRs of mRNAs. Using bioinformatics, we recently reported that several miRNAs also have target sites in DNA particularly in the promoters of the protein-coding genes. To understand the functional significance of this phenomenon, we tested the effects of miR-324-3p binding to RelA promoter.
View Article and Find Full Text PDFIt is well established that angiogenesis is the process of formation of new capillaries from pre-existing blood vessels. It is a complex process, involving both pro- and anti-angiogenic factors, and plays a significant role in physiological and pathophysiological processes such as embryonic development, atherosclerosis, post-ischemic vascularization of the myocardium, tumor growth and metastasis, rheumatoid arthritis etc. This is the first report of zinc oxide (ZnO) nanoflowers that show significant pro-angiogenic properties (formation of new capillaries from pre-existing blood vessels), observed by in vitro and in vivo angiogenesis assays.
View Article and Find Full Text PDF