Surface plasmon technology is regarded as having significant potential for the enhancement of the performance of 2D oxide semiconductors, especially in terms of improving the light absorption of 2D MoO photodetectors. An ultrathin MoO/Ir/SiO/Si heterojunction Schottky self-powered photodetector is introduced here to showcase positive photoconductivity. In wafer-scale production, the initial un-annealed Mo/2 nm Ir/SiO/Si sample displays a sheet carrier concentration of 5.
View Article and Find Full Text PDFUltrathin MoO semiconductor nanostructures have garnered significant interest as a promising nanomaterial for transparent nano- and optoelectronics, owing to their exceptional reactivity. Due to the shortage of knowledge about the electronic and optoelectronic properties of MoO/-Si via an ALD system of few nanometers, we utilized the preparation of an ultrathin MoO film at temperatures of 100, 150, 200, and 250 °C. The effect of the depositing temperatures on using bis(tbutylimido)bis(dimethylamino)molybdenum (VI) as a molybdenum source for highly stable UV photodetectors were reported.
View Article and Find Full Text PDFThis study was on the optoelectronic properties of multilayered two-dimensional MoS and WS materials on a silicon substrate using sputtering physical vapor deposition (PVD) and chemical vapor deposition (CVD) techniques. For the first time, we report ultraviolet (UV) photoresponses under air, CO, and O environments at different flow rates. The electrical Hall effect measurement showed the existence of MoS (n-type)/Si (p-type) and WS (P-type)/Si (p-type) heterojunctions with a higher sheet carrier concentration of 5.
View Article and Find Full Text PDFUltra-sensitive greenhouse gas sensors for CO, NO, and CH gases based on Fano resonance modes have been observed through periodic and quasi-periodic phononic crystal structures. We introduced a novel composite based on metal/2D transition metal dichalcogenides (TMDs), namely; platinum/platinum disulfide (Pt/PtS) composite materials. Our gas sensors were built based on the periodic and quasi-periodic phononic crystal structures of simple Fibonacci (F(5)) and generalized Fibonacci (FC(7, 1)) quasi-periodic phononic crystal structures.
View Article and Find Full Text PDFThe application of the photonic superlattice in advanced photonics has become a demanding field, especially for two-dimensional and strongly correlated oxides. Because it experiences an abrupt metal-insulator transition near ambient temperature, where the electrical resistivity varies by orders of magnitude, vanadium oxide (VO) shows potential as a building block for infrared switching and sensing devices. We reported a first principle study of superlattice structures of VOas a strongly correlated phase transition material and tungsten diselenide (WSe) as a two-dimensional transition metal dichalcogenide layer.
View Article and Find Full Text PDFVanadium oxide (VO) is considered a Peierls-Mott insulator with a metal-insulator transition (MIT) at T = 68° C. The tuning of MIT parameters is a crucial point to use VO within thermoelectric, electrochromic, or thermochromic applications. In this study, the effect of oxygen deficiencies, strain engineering, and metal tungsten doping are combined to tune the MIT with a low phase transition of 20 °C in the air without capsulation.
View Article and Find Full Text PDFThe defected acoustic band gap materials are promising a new generation of sensing technology based on layered cavities. We introduced a novel 1D defected phononic crystal (1D-DPC) as a high-sensitive gas sensor based on the Fano resonance transmitted window. Our designed (Lead-Epoxy) 1D-DPC multilayer has filled with a defect layer with different gases at different temperatures.
View Article and Find Full Text PDFThe distinctive properties of strongly correlated oxides provide a variety of possibilities for modulating the properties of 2D transition metal dichalcogenides semiconductors; which represent a new class of superior optical and optoelectronic interfacing semiconductors. We report a novel approach to scaling-up molybdenum disulfide (MoS) by combining the techniques of chemical and physical vapor deposition (CVD and PVD) and interfacing with a thin layer of monoclinic VO. MoWO/VO/MoS photodetectors were manufactured at different sputtering times by depositing molybdenum oxide layers using a PVD technique on p-type silicon substrates followed by a sulphurization process in the CVD chamber.
View Article and Find Full Text PDF