Coulombic forces are vital in modulating the electron transfer dynamics in both synthetic and biological polychromophoric assemblies, yet quantitative studies of the impact of such forces are rare, as it is difficult to disentangle electrostatic forces from simple electronic coupling. To address this problem, the impact of Coulombic interactions in the successive removal of two electrons from a model set of spirobifluorenes, where the interchromophoric electronic coupling is nonexistent, is quantitatively assessed. By systematically varying the separation of the bifluorene moieties using model compounds, ion pairing, and solvation, these interactions, with energies up to about 0.
View Article and Find Full Text PDFThe spontaneous assembly of aromatic cation radicals (D(+•)) with their neutral counterpart (D) affords dimer cation radicals (D(2)(+•)). The intermolecular dimeric cation radicals are readily characterized by the appearance of an intervalence charge-resonance transition in the NIR region of their electronic spectra and by ESR spectroscopy. The X-ray crystal structure analysis and DFT calculations of a representative dimer cation radical (i.
View Article and Find Full Text PDFortho-Phenylenes represent a fundamental but relatively unexplored class of conjugated molecular architecture. We have developed a robust synthetic approach to monodisperse o-phenylene oligomers which we have demonstrated by synthesizing a homologous series up to the dodecamer. The o-phenylenes exhibit complex conformational behavior but are biased toward a specific 2-fold-symmetric conformation which we believe corresponds to a stacked helix.
View Article and Find Full Text PDFDDQ/H(+) system readily oxidizes a variety of electron donors with oxidation potential as high as approximately 1.7 V to the corresponding cation radicals. A re-examination of the controversial arenium-ion versus cation-radical mechanisms for Scholl reaction using DDQ/H(+) together with commonly utilized FeCl(3) as oxidants led us to demonstrate that the reaction proceeds largely via a cation-radical mechanism.
View Article and Find Full Text PDFOxidative cyclodehydrogenation of hexakis(4-alkoxyphenyl)benzene produces a quantitative yield of an indenofluorene derivative rather than the expected alkoxy-substituted hexa-peri-hexabenzocoronene (HBC). The structure of the unexpected indenofluorene was established by X-ray crystallography. The mechanistic considerations for the formation of the indenofluorene derivative led us to devise an alternative synthesis of elusive alkoxy-substituted HBC-a potentially important, disk-shaped structure for the preparation of liquid crystalline materials for practical applications in the emerging areas of molecular electronics and nanotechnology.
View Article and Find Full Text PDFElectroactive tetraarylbenzo[1,2- b:4,5- b']difuran (BDF) and model diarylbenzofuran derivatives are synthesized and their structures are established by X-ray crystallography. Isolation and X-ray crystallographic characterization of the robust cation-radical salts of BDF derivatives confirm that a single charge in the BDFs is stabilized largely by the benzodifuran and coplanar alpha-aryl groups lying on the longitudinal axis. These findings suggest that the linear arrays of BDFs may allow the construction of molecular wires suitable for long-range electron transport.
View Article and Find Full Text PDF