Publications by authors named "Shriram Tallam Puranam Raghu"

In this study, we investigate the application of self-supervised learning via pre-trained Long Short-Term Memory (LSTM) networks for training surface electromyography pattern recognition models (sEMG-PR) using dynamic data with transitions. While labeling such data poses challenges due to the absence of ground-truth labels during transitions between classes, self-supervised pre-training offers a way to circumvent this issue. We compare the performance of LSTMs trained with either fully-supervised or self-supervised loss to a conventional non-temporal model (LDA) on two data types: segmented ramp data (lacking transition information) and continuous dynamic data inclusive of class transitions.

View Article and Find Full Text PDF

Post-processing techniques have been shown to improve the quality of the decision stream generated by classifiers used in pattern-recognition-based myoelectric control. However, these techniques have largely been tested individually and on well-behaved, stationary data, failing to fully evaluate their trade-offs between smoothing and latency during dynamic use. Correspondingly, in this work, we survey and compare 8 different post-processing and decision stream improvement schemes in the context of continuous and dynamic class transitions: majority vote, Bayesian fusion, onset locking, outlier detection, confidence-based rejection, confidence scaling, prior adjustment, and adaptive windowing.

View Article and Find Full Text PDF