Publications by authors named "Shriram Shivaraman"

The experimental demonstration of a p-type 2D WSe transistor with a ferroelectric perovskite BaTiO gate oxide is presented. The 30 nm thick BaTiO gate stack shows a robust ferroelectric hysteresis with a remanent polarization of 20 μC/cm and further enables a capacitance equivalent thickness of 0.5 nm in the hybrid WSe/BaTiO stack due to its high dielectric constant of 323.

View Article and Find Full Text PDF

van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH(4) partial pressure, growth temperature, and H(2)/CH(4) ratio were investigated and growth conditions optimized. The formation of monolayer graphene was shown by Raman spectroscopy, optical transmission, grazing incidence X-ray diffraction (GIXRD), and low voltage transmission electron microscopy (LVTEM).

View Article and Find Full Text PDF

Using optical-pump terahertz-probe spectroscopy, we study the relaxation dynamics of photoexcited carriers in graphene at different substrate temperatures. We find that at lower temperatures the tail of the relaxation transients measured by the differential probe transmission become slower, extending beyond several hundred picoseconds below 50 K. We interpret the observed relaxation transients as resulting from the cooling of the photoexcited carriers via phonon emission.

View Article and Find Full Text PDF

Epitaxial, graphitic carbon thin films were directly grown on C-face/ (0001̄) SiC and (0001) sapphire by chemical vapor deposition (CVD), using propane as a carbon source and without any catalytic metal on the substrate surface. Raman spectroscopy shows the signature of multilayer graphene/graphite growth on both the SiC and sapphire. Raman 2D-peaks have Lorentzian lineshapes with FWHM of ~60 cm(-1) and the ratio of the D-peak to G-peak intensity (I(D)/I(G)) linearly decreases (down to 0.

View Article and Find Full Text PDF

We report on a method to produce free-standing graphene sheets from epitaxial graphene on silicon carbide (SiC) substrate. Doubly clamped nanomechanical resonators with lengths up to 20 microm were patterned using this technique and their resonant motion was actuated and detected optically. Resonance frequencies of the order of tens of megahertz were measured for most devices, indicating that the resonators are much stiffer than expected for beams under no tension.

View Article and Find Full Text PDF

The ultrafast relaxation and recombination dynamics of photogenerated electrons and holes in epitaxial graphene are studied using optical-pump terahertz-probe spectroscopy. The conductivity in graphene at terahertz frequencies depends on the carrier concentration as well as the carrier distribution in energy. Time-resolved studies of the conductivity can therefore be used to probe the dynamics associated with carrier intraband relaxation and interband recombination.

View Article and Find Full Text PDF