The Partially Observable Markov Decision Process (POMDP), a mathematical framework for decision-making in uncertain environments suffers from the curse of dimensionality. There are various methods that can handle huge sizes of POMDP matrices to create approximate solutions, but no serious effort has been reported to effectively control the size of the POMDP matrices. Manually creating the high-dimension matrices of a POMDP model is a cumbersome and sometimes even impossible task.
View Article and Find Full Text PDF