Publications by authors named "Shripad V Bhagwat"

Targeting of the estrogen receptor (ER) by anti-estrogens is the standard-of-care for patients with ER+ HER2- advanced/metastatic breast cancer. While anti-estrogens that degrade ERα (fulvestrant) or block estrogen production (aromatase inhibitors) have improved patient outcomes, clinically important challenges remain related to drug administration, limited bioavailability, lack of brain exposure, and acquired resistance due to ESR1 mutations. These limitations indicate a need for more robust ER-targeted therapies.

View Article and Find Full Text PDF

Purpose: Plexiform neurofibromas (PNF) are peripheral nerve sheath tumors that cause significant morbidity in persons with neurofibromatosis type 1 (NF1), yet treatment options remain limited. To identify novel therapeutic targets for PNF, we applied an integrated multi-omic approach to quantitatively profile kinome enrichment in a mouse model that has predicted therapeutic responses in clinical trials for NF1-associated PNF with high fidelity.

Experimental Design: Utilizing RNA sequencing combined with chemical proteomic profiling of the functionally enriched kinome using multiplexed inhibitor beads coupled with mass spectrometry, we identified molecular signatures predictive of response to CDK4/6 and RAS/MAPK pathway inhibition in PNF.

View Article and Find Full Text PDF

gene mutations are the most frequent oncogenic event in lung cancer. They activate multiple RAS-centric signaling networks among them the MAPK, PI3K, and RB pathways. Within the MAPK pathway, ERK1/2 proteins exert a bottleneck function for transmitting mitogenic signals and activating cytoplasmic and nuclear targets.

View Article and Find Full Text PDF

Metastasis is the primary cause of cancer mortality. The primary tumors of colorectal cancer (CRC) often metastasize to the liver. In this study, we have collected 122 samples from 45 CRC patients.

View Article and Find Full Text PDF
Article Synopsis
  • * Through various tests, we found that combining RAFi with ERK inhibitors (ERKi) produces strong anti-tumor effects at low doses, while using them individually only slows cancer cell growth.
  • * Detailed studies reveal that this combination disrupts cancer cell signaling pathways and promotes a transition that makes cells less aggressive, indicating it could be a promising treatment approach for this type of cancer.
View Article and Find Full Text PDF

The ERK pathway is critical in oncogenesis; aberrations in components of this pathway are common in approximately 30% of human cancers. ERK1/2 (ERK) regulates cell proliferation, differentiation, and survival and is the terminal node of the pathway. BRAF- and MEK-targeted therapies are effective in BRAF V600E/K metastatic melanoma and lung cancers; however, responses are short-lived due to emergence of resistance.

View Article and Find Full Text PDF

Although Aurora A, B, and C kinases share high sequence similarity, especially within the kinase domain, they function distinctly in cell-cycle progression. Aurora A depletion primarily leads to mitotic spindle formation defects and consequently prometaphase arrest, whereas Aurora B/C inactivation primarily induces polyploidy from cytokinesis failure. Aurora B/C inactivation phenotypes are also epistatic to those of Aurora A, such that the concomitant inactivation of Aurora A and B, or all Aurora isoforms by nonisoform-selective Aurora inhibitors, demonstrates the Aurora B/C-dominant cytokinesis failure and polyploidy phenotypes.

View Article and Find Full Text PDF

The Cancer Genome Atlas (TCGA) projects have advanced our understanding of the driver mutations, genetic backgrounds, and key pathways activated across cancer types. Analysis of TCGA datasets have mostly focused on somatic mutations and translocations, with less emphasis placed on gene amplifications. Here we describe a bioinformatics screening strategy to identify putative cancer driver genes amplified across TCGA datasets.

View Article and Find Full Text PDF

The phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway is frequently activated in human cancers, and mTOR is a clinically validated target. mTOR forms two distinct multiprotein complexes, mTORC1 and mTORC2, which regulate cell growth, metabolism, proliferation, and survival. Rapamycin and its analogues partially inhibit mTOR through allosteric binding to mTORC1, but not mTORC2, and have shown clinical utility in certain cancers.

View Article and Find Full Text PDF

The discovery and optimization of a series of imidazo[1,5-a]pyrazine inhibitors of mTOR is described. HTS hits were optimized for potency, selectivity and metabolic stability to provide the orally bioavailable proof of concept compound 4c that demonstrated target inhibition in vivo and concomitant inhibition of tumor growth in an MDA-MB-231 xenograft model.

View Article and Find Full Text PDF

The PI3K/Akt/mTOR pathway is frequently activated in human cancers, and mTOR is a clinically validated target for therapeutic intervention in this pathway. The discovery of the involvement of rapamycin-insensitive mTOR complex 2 (mTORC2) in the activation of Akt, combined with the limited clinical antitumor activity of mTOR complex 1 (mTORC1)-directed rapamycin analogs, have led to the discovery of ATP-competitive selective inhibitors of the mTOR kinase that inhibit the function of both mTORC1 and mTORC2. This review describes progress in the identification of selective and novel inhibitors of mTORC1/2, focusing on the profile of inhibitors that are in clinical development.

View Article and Find Full Text PDF

A high-throughput chemiluminescence and ELISA-based biochemical assay to identify mTORC1/mTORC2 kinase inhibitors is described. These mTOR complexes were isolated from HeLa whole cell lysate using mTOR antibodies and in-well immunoprecipitation. The integrity and purity of the mTORC1 and mTORC2 immunocomplexes were confirmed by western blotting.

View Article and Find Full Text PDF

We previously reported the occurrence of multiple forms of drug metabolizing enzymes in camel tissues. In this study, we demonstrated for the first time, flavin-containing monooxygenase (FMO)-dependent metabolism of two model substrates methimazole (MEM) and N,N'-dimethylaniline (DMA) by camel liver, kidney, brain and intestine. FMO-catalyzed metabolism in the microsomes of camel tissues was independent of cytochrome P450 (CYP) activity and exhibited a pH and temperature dependence characteristic of FMO enzymes.

View Article and Find Full Text PDF

CD13/aminopeptidase N (CD13/APN) is a potent regulator of angiogenesis both in vitro and in vivo and transcription of CD13/APN in endothelial cells is induced by angiogenic growth factors via the RAS/MAPK pathway. We have explored the nuclear effectors downstream of this pathway that are responsible for CD13/APN induction. The response to serum/angiogenic growth factors mapped to a 38-bp region of the CD13/APN promoter containing an Ets-core motif that specifically binds a protein complex from nuclear lysates from activated endothelial cells.

View Article and Find Full Text PDF

Angiogenesis, the formation of new blood vessels, is a critical step for tumor growth and metastasis and an integral component of the pathologic inflammatory response in arthritis and the proliferative retinopathies. The CD13/aminopeptidase N (CD13/APN) metalloprotease is an important regulator of angiogenesis where its expression on activated blood vessels is induced by angiogenic signals. Here, we show that cytokine induction of CD13/APN in endothelial cells is regulated by distinct Ras effector pathways involving Ras/mitogen-activated protein kinase (MAPK) or PI-3K.

View Article and Find Full Text PDF