A series of 3,4-diaryl-1,2,5-oxadiazoles and 3,4-diaryl-1,2,5-oxadiazole N-oxides were prepared and evaluated for COX-2 and COX-1 binding affinity in vitro and for antiinflammatory activity by the rat paw edema method. p-Methoxy (p-OMe) substituted compounds 9, 21, 34, 41, 42 showed COX-2 enzyme inhibition higher than that showed by compounds with other substituents. 3,4-Di(4-methoxyphenyl)-1,2,5-oxadiazole N-oxide (42) showed COX-2 enzyme inhibition of 54% at 22 micromol L(-1) and COX-1 enzyme inhibition of 44% at 88 micromol L(-1) concentrations, but showed very low in vivo anti-inflammatory activity.
View Article and Find Full Text PDFIt was envisaged to combine high antipyretic activity of paracetamol into commonly used NSAIDs. To achieve this goal new chemical entities were synthesized by chemically combining paracetamol and NSAIDs, and biologically evaluated for their antipyretic, analgesic, anti-inflammatory and ulcerogenic potential. The acid chloride of parent NSAIDs was reacted with excess of p-aminophenol to yield the desired p-amidophenol derivatives (1B-7B).
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.