Phys Chem Chem Phys
August 2024
The present study delves into the question of how the strength of a hydrogen bond (HB) common to two or more cyclic HB networks is influenced by the cooperativity contributions (CCs) of these cycles. We employ the molecular tailoring approach-based method to calculate the cyclic CCs in water clusters, W ( = 6-20). The energy of an HB in a W cluster is estimated by adding the total cyclic CC to its counterpart in the respective dimer.
View Article and Find Full Text PDFThe noncovalent interactions (NCIs) are omnipresent in chemistry, physics, and biology. The study of such interactions offers insights into various physicochemical phenomena. Some indirect approaches proposed in the literature for exploring the NCIs are briefly reviewed in Section 1 of this Perspective.
View Article and Find Full Text PDFConstructing the Hessian matrix (HM) for large molecules demands huge computational resources. Here, we report a cluster-in-cluster (CIC) procedure for efficiently evaluating HM and dipole derivatives for large molecular clusters by employing the second-order Møller-Plesset perturbation (MP2) theory. The highlight of the proposal is the separation of the estimations of Hartree-Fock (HF) and post-HF components.
View Article and Find Full Text PDFThis work reports the development of an algorithm for rapid and efficient evaluation of energy gradients for large molecular clusters employing correlated methods viz. second-order Møller-Plesset perturbation theory (MP2) theory and couple cluster singles and doubles (CCSD). The procedure segregates the estimation of Hartree-Fock (HF) and correlation components.
View Article and Find Full Text PDFA procedure, derived from the fragmentation-based molecular tailoring approach (MTA), has been proposed and extensively applied by Deshmukh and Gadre for directly estimating the individual hydrogen bond (HB) energies and cooperativity contributions in molecular clusters. However, the manual fragmentation and high computational cost of correlated quantum chemical methods make the application of this method to large molecular clusters quite formidable. In this article, we report an in-house developed software for automated hydrogen bond energy estimation (H-BEE) in large molecular clusters.
View Article and Find Full Text PDFThe covalent and non-covalent nature of carbon-carbon (CC) interactions in a wide range of molecular systems can be characterized using various methods, including the analysis of molecular electrostatic potential (MESP), represented as (), and the molecular electron density (MED), represented as (). These techniques provide valuable insights into the bonding between carbon atoms in different molecular environments. By uncovering a fundamental exponential relationship between the distance of the CC bond and the highest eigenvalue () of () at the bond critical point (BCP), this study establishes the continuum model for all types of CC interactions, including transition states.
View Article and Find Full Text PDFExploring the structures and spectral features of proteins with advanced quantum chemical methods is an uphill task. In this work, a fragment-based molecular tailoring approach (MTA) is appraised for the CAM-B3LYP/aug-cc-pVDZ-level geometry optimization and vibrational infrared (IR) spectra calculation of ten real proteins containing up to 407 atoms and 6617 basis functions. The use of MTA and the inherently parallel nature of the fragment calculations enables a rapid and accurate calculation of the IR spectrum.
View Article and Find Full Text PDFThe variation in the hydrogen bond (HB) strength has considerable consequences on the physicochemical properties of molecular clusters. Such a variation mainly arises due to the cooperative/anti-cooperative networking effect of neighboring molecules connected by HBs. In the present work, we systematically study the effect of neighboring molecules on the strength of an individual HB and the respective cooperativity contribution toward each of them in a variety of molecular clusters.
View Article and Find Full Text PDFTropolone, a 15-atom cyclic molecule, has received much interest both experimentally and theoretically due to its H-transfer tunneling dynamics. An accurate theoretical description is challenging owing to the need to develop a high-level potential energy surface (PES) and then to simulate quantum-mechanical tunneling on this PES in full dimensionality. Here, we tackle both aspects of this challenge and make detailed comparisons with experiments for numerous isotopomers.
View Article and Find Full Text PDFThe π-conjugation, aromaticity, and stability of the newly synthesized 12-infinitene and of other infinitenes comprising 8-, 10-, 14-, and 16-arene rings are investigated using density functional theory. The π-electron delocalization and aromatic character rooted in infinitenes are quantified in terms of molecular electrostatic potential (MESP) topology. Structurally, the infinitene bears a close resemblance of its helically twisted structure to the infinity symbol.
View Article and Find Full Text PDFWe demonstrate a cost-effective alternative employing the fragment-based molecular tailoring approach (MTA) for building the potential energy surface (PES) for two dipeptides viz. alanine-alanine and alanine-proline employing correlated theory, with augmented Dunning basis sets. About 1369 geometries are generated for each test dipeptide by systematically varying the dihedral angles and .
View Article and Find Full Text PDFRecently, we have developed and tested a method, based on the molecular tailoring approach (MTA-based) to directly estimate the individual hydrogen bond (HB) energies in molecular clusters. Application of this MTA-based method to large molecular clusters is prohibitively difficult due to the evaluation of the energy of large-sized fragments. We propose here a smaller model system called the shell model, to overcome this difficulty.
View Article and Find Full Text PDFThis work reports the development and testing of an automated algorithm for estimating the energies of weakly bound molecular clusters employing correlated theory. Firstly, the monomers and dimers of (homo/hetero) clusters are identified, and the sum of one-body and two-body contributions to correlation energy is calculated. The addition of this contribution to the Hartree-Fock full calculation (FC) energies provides a good estimate of the total energies at Møller-Plesset second-order perturbation theory (MP2)/coupled-cluster method with singles and doubles (CCSD) (T)-level theory using augmented Dunning basis sets.
View Article and Find Full Text PDFThe construction of a potential energy surface (PES) of even a medium-sized molecule employing correlated theory, such as CCSD(T), is arduous due to the high computational cost involved. The present study reports the possibility of efficiently constructing such a PES of molecules containing up to 15 atoms and 550 basis functions by employing the fragment-based molecular tailoring approach (MTA) on off-the-shelf hardware. The MTA energies at the CCSD(T)/aug-cc-pVTZ level for several geometries of three test molecules, viz.
View Article and Find Full Text PDFIn this work, our recently proposed molecular tailoring approach (MTA)-based method is employed for the evaluation of individual hydrogen-bond (HB) energies in linear (L) and cyclic (C) hydrogen fluoride clusters, (HF) ( = 3 to 8). The estimated individual HB energies calculated at the MP2(full)/aug-cc-pVTZ level for the L-(HF) are between 6.2 to 9.
View Article and Find Full Text PDFThere is no general method available for the estimation of individual intermolecular interaction energies in weakly bound molecular clusters, and such studies are limited only to the dimer. Recently, we proposed a molecular tailoring approach-based method for the estimation of individual O-H···O hydrogen bond energies in water clusters. In the present work, we extend the applicability of this method for estimating the individual intermolecular interaction energies in benzene clusters, which are expected to be small.
View Article and Find Full Text PDFThe phenomenon of antiaromaticity-aromaticity interplay in aromatic-antiaromatic (A-aA)-fused systems is studied using molecular electrostatic potential (MESP) analysis, which clearly brings out the electron-rich π-regions of molecular systems. Benzene, naphthalene, phenanthrene, and pyrene are the aromatic units and cyclobutadiene and pentalene are the antiaromatic units considered to construct the A-aA-fused systems. The fused system is seen to reduce the antiaromaticity by adopting a configuration containing the least number of localized bonds over antiaromatic moieties.
View Article and Find Full Text PDFFollowing the pioneering investigations of Bader on the topology of molecular electron density, the topology analysis of its sister field viz. molecular electrostatic potential (MESP) was taken up by the authors' groups. Through these studies, MESP topology emerged as a powerful tool for exploring molecular bonding and reactivity patterns.
View Article and Find Full Text PDFHydrogen bonds (HBs) play a crucial role in many physicochemical and biological processes. Theoretical methods can reliably estimate the intermolecular HB energies. However, the methods for the quantification of intramolecular HB (IHB) energy available in the literature are mostly empirical or indirect and limited only to evaluating the energy of a single HB.
View Article and Find Full Text PDFNo direct method for estimating the individual O-H···O hydrogen bond (H-bond) energies in water clusters (W) exists in the literature. In this work, we propose such a direct method based on the molecular tailoring approach, which also enables the estimation of the cooperativity contributions. The calculated H-bond energies at MP2(full)/aug-cc-pVTZ and CCSD(T)/aug-cc-pVDZ levels for W, = 3 to 8, agree well with one another and fall between 0.
View Article and Find Full Text PDFA molecular electrostatic potential (MESP) topographical study has been conducted for a variety of conjugated hydrocarbons at B3LYP/6-311+G(d,p) level of theory to understand their π-conjugation features and aromaticity. The value of MESP minimum () is related to the localized and delocalized distribution of π-electron density. The values are located interior to the rings in polycyclic benzenoid hydrocarbons (PBHs), whereas they lie outside the boundary of the rings in antiaromatic and in fused systems consisting of aromatic and antiaromatic moieties.
View Article and Find Full Text PDFGlobal geometry optimization of metal clusters is an important problem in nanophysics. The starting geometries of the clusters generated with empirical or other model potentials are generally optimized further by density functional theory (DFT)-based energy minimization. For this purpose, several algorithms such as simulated annealing, genetic algorithms, basin hopping, etc.
View Article and Find Full Text PDFWe propose a procedure, within the many-body analysis (MBA) framework, for an economic yet accurate estimation of the correlated method-based energies of large molecular clusters employing Dunning's augmented basis sets. The basis of the procedure is to segregate the Hartree-Fock ( E) and correlation energy ( E) estimations. E is found to differ by tens of millihartrees (mH) from its full-calculation (FC) counterpart on truncating the MBA expansion at the two-body (MBA-2) level.
View Article and Find Full Text PDFFragmentation methods offer an attractive alternative for treatment of large molecules and molecular clusters. However, balancing the accuracy and efficiency of these methods is a tight-rope-act. With this in view, we present an algorithm for automatic molecular fragmentation within Molecular Tailoring Approach (MTA) achieving this delicate balance.
View Article and Find Full Text PDF