Publications by authors named "Shridhar Kulkarni"

Article Synopsis
  • - The implementation of the Sustainable Development Goals (SDGs) is struggling because of siloed strategies that prevent a unified approach.
  • - To tackle these issues, the text highlights three key areas: how SDGs interact with each other, modeling these interactions, and using appropriate tools.
  • - By focusing on these interconnected aspects, the aim is to enhance progress on the SDGs and effectively apply the principles of integration and indivisibility.
View Article and Find Full Text PDF

In addition to enhancing diagnostic accuracy, deep learning techniques offer the potential to streamline workflows, reduce interpretation time, and ultimately improve patient outcomes. The scalability and adaptability of deep learning algorithms enable their deployment across diverse clinical settings, ranging from radiology departments to point-of-care facilities. Furthermore, ongoing research efforts focus on addressing the challenges of data heterogeneity, model interpretability, and regulatory compliance, paving the way for seamless integration of deep learning solutions into routine clinical practice.

View Article and Find Full Text PDF

Introduction: Corneal blindness accounts for 6-8 million blinds in the world. In India, it is estimated that there are approximately 6.8 million people who have vision less than 6/60 in at least one eye due to corneal diseases.

View Article and Find Full Text PDF

Poly(ADP-ribose)polymerase-1 (PARP-1) is an abundant and ubiquitous chromatin-bound nuclear protein. PARP-1, a DNA repair enzyme, has been in the limelight as a chemotherapeutic target. In this study, we demonstrated the successful use of structure-based virtual screening to identify inhibitors of PARP-1 from Otava databases comprised of nearly 260,000 compounds.

View Article and Find Full Text PDF

We have demonstrated that quinazolin-4(3H)-one, a nicotinamide (NI) mimic with PARP-1 inhibitory activity in the high micromolar range (IC(50) = 5.75 μM) could be transformed into highly active derivatives with only marginal increase in molecular weight. Convenient one to two synthetic steps allowed us to explore extensive SAR at the 2-, and 5- through 8-positions of the quinazolin-4(3H)-one scaffold.

View Article and Find Full Text PDF

A series of rhodanine compounds containing various substituents at the N3- and C5-positions were synthesized and their in vitro activity against a panel of clinically relevant MRSA strains was determined. The anti-MRSA activity of compounds 21 (MIC=3.9 μg/mL, MBC=7.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) NS5B polymerase is a key target for the development of therapeutic agents aimed at the treatment of HCV infections. Here we report on the identification of novel allosteric inhibitors of HCV NS5B through a combination of structure-based virtual screening, synthesis and structure-activity relationship (SAR) optimization approach. Virtual screening of 260,000 compounds from the ChemBridge database against the tetracyclic indole inhibitor binding pocket of NS5B (allosteric pocket-1, AP-1), sequentially down-sized the library by 4 orders of magnitude to yield 23 candidates.

View Article and Find Full Text PDF

Phosphodiesterase10A (PDE10A) is an important enzyme with diverse biological actions in intracellular signaling systems, making it an emerging target for diseases such as schizophrenia, Huntington's disease, and diabetes mellitus. The objective of the current 3D QSAR study is to uncover some of the structural parameters which govern PDE10A inhibitory activity over PDE3A/B. Thus, comparative molecular field analysis (CoMFA) and hologram quantitative structure-activity relationship (HQSAR) studies were carried out on recently reported 6,7-dimethoxy-4-pyrrolidylquinazoline derivatives as PDE10A inhibitors.

View Article and Find Full Text PDF