Publications by authors named "Shri V Subramani"

A major challenge in synthesizing strong and tough protein fibers based on spider silk motifs is understanding the coupling between protein sequence and the postspin drawing process. We clarify how drawing-induced elongational force affects ordering, chain extension, interchain contacts, and molecular mobility through mesoscale simulations of silk-based fibers. We show that these emergent features can be used to predict mechanical property enhancements arising from postspin drawing.

View Article and Find Full Text PDF

Hydrogels made from proteins are attractive materials for diverse medical applications, as they are biocompatible, biodegradable, and amenable to chemical and biological modifications. Recent advances in protein engineering, synthetic biology, and material science have enabled the fine-tuning of protein sequences, hydrogel structures, and hydrogel mechanical properties, allowing for a broad range of biomedical applications using protein hydrogels. This article reviews recent progresses on protein hydrogels with special focus on those made of microbially produced proteins.

View Article and Find Full Text PDF

High molecular weight (MW), highly repetitive protein polymers are attractive candidates to replace petroleum-derived materials as these protein-based materials (PBMs) are renewable, biodegradable, and have outstanding mechanical properties. However, their high MW and highly repetitive sequence features make them difficult to synthesize in fast-growing microbial cells in sufficient amounts for real applications. To overcome this challenge, various methods were developed to synthesize repetitive PBMs.

View Article and Find Full Text PDF