Publications by authors named "Shreyas Sen"

The emergence of Human Body Communication (HBC), as an energy-efficient and physically secure mode of information exchange, has escalated the exploration of communication modalities between the human body and surrounding conducting objects. In this paper, we propose an Inter-Structure communication guided by Human Body while envisioning the need for non-contact sensing of biological objects such as humans with secure data offloading by analyzing the Structure-Human-Structure Interaction (SHSI) in Electro-Quasistatic (EQS) regime. Results show that the presence of a human between conducting structures (with Tx & Rx) can boost the received voltage by ~8 dB or more.

View Article and Find Full Text PDF
Article Synopsis
  • - Precision livestock farming (PLF) enhances management of large animal groups by improving profitability, efficiency, and animal welfare while addressing global challenges like food security and environmental impacts.
  • - PLF utilizes digital technologies for real-time monitoring, allowing for individualized animal care and meeting the rising global demand for animal products as the population approaches ten billion.
  • - Although PLF technology has advanced, concerns remain about its viability; leveraging an Internet of Things approach could optimize monitoring and management in livestock systems.
View Article and Find Full Text PDF

Energy-efficient sensing with physically secure communication for biosensors on, around, and within the human body is a major area of research for the development of low-cost health care devices, enabling continuous monitoring and/or secure perpetual operation. When used as a network of nodes, these devices form the Internet of Bodies, which poses challenges including stringent resource constraints, simultaneous sensing and communication, and security vulnerabilities. Another major challenge is to find an efficient on-body energy-harvesting method to support the sensing, communication, and security submodules.

View Article and Find Full Text PDF

Sensors in and around the environment becoming ubiquitous has ushered in the age of smart animal agriculture which has the potential to greatly improve animal health and productivity. The data gathered from sensors dwelling in animal agriculture settings have made farms a part of the IoT space leading to active research in developing efficient communication methodologies for farm networks. This study focuses on the first hop of farm networks where data from inside the body of animals is communicated to a node dwelling outside the body.

View Article and Find Full Text PDF

Human Body Communication (HBC) is an alternative to radio wave-based Wireless Body Area Network (WBAN) because of its wide bandwidth leading to enhanced energy efficiency. Designing Modern HBC devices need the accurate electrical equivalent of the HBC channel for energy efficient communication. The objective of this paper is to present an improved lumped element-based detailed model of Galvanic HBC channel which can be used to explain the dependency of the channel behaviour on the internal body dependent parameters such as electrical properties of skin and muscle tissue layers along with the external parameters such as electrode size, electrode separation, geometrical position of the electrodes and return-path or parasitic capacitances.

View Article and Find Full Text PDF

With the advent of wearables, Human Body Communication (HBC) has emerged as a physically secure and power-efficient alternative to the otherwise ubiquitous Wireless Body Area Network (WBAN). Whereas the most investigated HBC modalities have been Electric and Electro-quasistatic (EQS) Capacitive and Galvanic, recently Magnetic HBC (M-HBC) has been proposed as a viable alternative. Previous works have investigated M-HBC through application points-of-view, without exploring its fundamental working principle.

View Article and Find Full Text PDF

Continuous real-time health monitoring in animals is essential for ensuring animal welfare. In ruminants like cows, rumen health is closely intertwined with overall animal health. Therefore, in-situ monitoring of rumen health is critical.

View Article and Find Full Text PDF

Several on-body sensing and communication applications use electrodes in contact with the human body. Body-electrode interfaces in these cases act as a transducer, converting ionic current in the body to electronic current in the sensing and communication circuits and vice versa. An ideal body-electrode interface should have the characteristics of an electrical short, i.

View Article and Find Full Text PDF

The emergence of Human Body Communication (HBC) as an alternative to wireless body area networks (WBAN) has led to the development of small sized, energy efficient and more secure wearable and implantable devices forming a network in and around the body. Previous studies claim that though HBC is comparatively more secure than WBAN, nevertheless, the electromagnetic (EM) radiative nature of HBC in >10 MHz region makes the information susceptible to eavesdropping. Furthermore, interferences may be picked up by the body due to the human body antenna effect in the 40-400 MHz range.

View Article and Find Full Text PDF

Human Body Communication (HBC) has come up as a promising alternative to traditional radio frequency (RF) Wireless Body Area Network (WBAN) technologies. This is essentially due to HBC providing a broadband communication channel with enhanced signal security in the physical layer due to lower radiation from the human body as compared to its RF counterparts. An in-depth understanding of the mechanism for the channel loss variability and associated biophysical model needs to be developed before electro-quasistatic (EQS) HBC can be used more frequently in WBAN consumer and medical applications.

View Article and Find Full Text PDF

Radiative communication using electromagnetic fields is the backbone of today's wirelessly connected world, which implies that the physical signals are available for malicious interceptors to snoop within a 5-10 m distance, also increasing interference and reducing channel capacity. Recently, Electro-quasistatic Human Body Communication (EQS-HBC) was demonstrated which utilizes the human body's conductive properties to communicate without radiating the signals outside the body. Previous experiments showed that an attack with an antenna was unsuccessful at a distance more than 1 cm from the body surface and 15 cm from an EQS-HBC device.

View Article and Find Full Text PDF

Continuous multi-channel monitoring of biopotential signals is vital in understanding the body as a whole, facilitating accurate models and predictions in neural research. The current state of the art in wireless technologies for untethered biopotential recordings rely on radiative electromagnetic (EM) fields. In such transmissions, only a small fraction of this energy is received since the EM fields are widely radiated resulting in lossy inefficient systems.

View Article and Find Full Text PDF

Human Body Communication (HBC) utilizes the electrical conductivity properties of the human body to communicate between devices in and around the body. The increased energy-efficiency and security provided by HBC compared to traditional radio wave based communication makes it a promising alternative to communicate between energy constrained wearable and implantable devices around the body.However, HBC requires electrical signals to be transmitted through the body, which makes it essential to have a thorough analysis of the safety aspects of such transmission.

View Article and Find Full Text PDF

Successful rehabilitation of oropharyngeal swallowing disorders (i.e., dysphagia) requires frequent performance of head/neck exercises that primarily rely on expensive biofeedback devices, often only available in large medical centers.

View Article and Find Full Text PDF

Broadband Human Body Communication (HBC) enables energy efficient communication between body area network devices by utilizing the electrical conductivity property of the human body. However, environmental interference remains a primary bottleneck in its implementation. An integrating front-end receiver with resettable integration followed by periodic sampling can be utilized to enable interference robust broadband HBC.

View Article and Find Full Text PDF

Prolific growth of miniaturized devices has led to widespread use of wearable devices and physiological sensors. The state-of-art technique for connecting these devices and sensors is through wireless radio waves. However, wireless body area wireless body area network (WBAN) suffers from limited security (wireless signals from energy-constrained sensors can be snooped by nearby attackers), poor energy-efficiency (up conversion and down conversion), and self-interference.

View Article and Find Full Text PDF

Radiative communication using electro-magnetic (EM) fields amongst the wearable and implantable devices act as the backbone for information exchange around a human body, thereby enabling prime applications in the fields of connected healthcare, electroceuticals, neuroscience, augmented and virtual reality. However, owing to such radiative nature of the traditional wireless communication, EM signals propagate in all directions, inadvertently allowing an eavesdropper to intercept the information. In this context, the human body, primarily due to its high water content, has emerged as a medium for low-loss transmission, termed human body communication (HBC), enabling energy-efficient means for wearable communication.

View Article and Find Full Text PDF

This article presents a broad review on optical, radio-frequency (RF), microwave (MW), millimeter wave (mmW) and terahertz (THz) biosensors. Biomatter-wave interaction modalities are considered over a wide range of frequencies and applications such as detection of cancer biomarkers, biotin, neurotransmitters and heart rate are presented in detail. By treating biological tissue as a dielectric substance, having a unique dielectric signature, it can be characterized by frequency dependent parameters such as permittivity and conductivity.

View Article and Find Full Text PDF

In this emerging data-driven world, secure and ubiquitous authentication mechanisms are necessary prior to any confidential information delivery. Biometric authentication has been widely adopted as it provides a unique and non-transferable solution for user authentication. In this article, the authors envision the need for an infield, remote and on-demand authentication system for a highly mobile and tactical environment, such as critical information delivery to soldiers in a battlefield.

View Article and Find Full Text PDF

Human Body Communication (HBC) has recently emerged as an alternative to radio frequency transmission for connecting devices on and in the human body with order(s) of magnitude lower energy. The communication between these devices can give rise to different scenarios, which can be classified as wearable-wearable, wearable-machine, machine-machine interactions. In this paper, for the first time, the human body channel characteristics is measured for a wide range of such possible scenarios (14 vs.

View Article and Find Full Text PDF

Human body communication (HBC) has emerged as an alternative to radio wave communication for connecting low power, miniaturized wearable, and implantable devices in, on, and around the human body. HBC uses the human body as the communication channel between on-body devices. Previous studies characterizing the human body channel has reported widely varying channel response much of which has been attributed to the variation in measurement setup.

View Article and Find Full Text PDF

Recent progress in biosensor technology and wearable devices has created a formidable opportunity for remote healthcare monitoring systems as well as real-time diagnosis and disease prevention. The use of data mining techniques is indispensable for analysis of the large pool of data generated by the wearable devices. Deep learning is among the promising methods for analyzing such data for healthcare applications and disease diagnosis.

View Article and Find Full Text PDF

Rapid miniaturization and cost reduction of computing, along with the availability of wearable and implantable physiological sensors have led to the growth of human Body Area Network (BAN) formed by a network of such sensors and computing devices. One promising application of such a network is wearable health monitoring where the collected data from the sensors would be transmitted and analyzed to assess the health of a person. Typically, the devices in a BAN are connected through wireless (WBAN), which suffers from energy inefficiency due to the high-energy consumption of wireless transmission.

View Article and Find Full Text PDF