Cardiogenic shock (CS) is a severe condition with in-hospital mortality of up to 50%. Patients who develop CS may have previous cardiac history, but that may not always be the case, adding to the challenges in optimally identifying and managing these patients. Patients may present to a medical facility with CS or develop CS while in the emergency department (ED), in a general inpatient ward (WARD) or in the critical care unit (CC).
View Article and Find Full Text PDFAntimicrob Resist Infect Control
January 2022
Background And Objectives: There is a need for robust antibiotic stewardship programs (ASPs) in the neonatal population. This study's objectives were to assess neonatal antibiotic use practices over an extended period across an integrated delivery network (IDN), including six Neonatal Intensive Care Units (NICUs), to identify those most successful practices reducing use rates.
Methods: A retrospective cohort study was conducted, including 15,015 NICU admissions from an integrated delivery network, across six hospitals over eight years (50% Level III and 50% Level II) computing antibiotic use rates (AURs) stratified by usage: in the first few days of the stay vs.
Coronavirus Disease 2019 (COVID-19) is an international health crisis. In this article, we report on patient characteristics associated with care transitions of: 1) hospital admission from the emergency department (ED) and 2) escalation to the intensive care unit (ICU). Analysis of data from the electronic medical record (EMR) was performed for patients with COVID-19 seen in the ED of a large Western U.
View Article and Find Full Text PDFThe targeted delivery of nanoparticle carriers holds tremendous potential to transform the detection and treatment of diseases. A major attribute of nanoparticles is the ability to form multiple bonds with target cells, which greatly improves the adhesion strength. However, the multivalent binding of nanoparticles is still poorly understood, particularly from a dynamic perspective.
View Article and Find Full Text PDF3D tissue culture models are utilized to study breast cancer and other pathologies because they better capture the complexity of in vivo tissue architecture compared to 2D models. However, to mimic the in vivo environment, the mechanics and geometry of the ECM must also be considered. Here, we studied the mechanical environment created in two 3D models, the overlay protocol (OP) and embedded protocol (EP).
View Article and Find Full Text PDF