These data show the relative amount of chromosomal instability (CIN) in a diverse array of human breast cell types, including non-transformed mammary epithelial cells as well as cancer cell lines. Additional data is also provided from human embryonic and mesenchymal stem cells. To produce this dataset, we compared a published chromosomal instability gene signature against publicly available datasets containing gene expression information for each cell.
View Article and Find Full Text PDFChromosomal instability (CIN) is critical for tumor evolution, yet its relationship with stemness is unclear. Here, we describe CIN as a key stress induced during tumor initiation that is uniquely tolerated by breast cancer stem cells in an activated signaling state (aCSCs). While we noted elevated CIN specifically in tumors from aCSCs, this was not intrinsic to these cells, as baseline levels were similar to non-stem cell types.
View Article and Find Full Text PDF