β-catenin is frequently implicated in signaling pathways that regulate autophagy, and the production of reactive oxygen species (ROS) has been linked to autophagy activation. Isoxazole-based nucleoside compounds have demonstrated anti-cancer properties. In this study, we report the identification of novel isoxazole-nucleosides as anti-tumor agents and their impact on autophagy in human colorectal carcinoma (CRC) cells.
View Article and Find Full Text PDFSeveral chemotherapeutics against breast cancer are constrained by their adverse effects and chemoresistance. The development of novel chemotherapeutics to target metastatic breast cancer can bring effective clinical outcomes. Many breast cancer patients present with tumors that are positive for estrogen receptors (ERs), highlighting the importance of targeting the ER pathway in this particular subtype.
View Article and Find Full Text PDFAutophagy is vital for maintaining cellular homeostasis by breaking down unnecessary organelles and proteins within cells. Its activity varies abnormally in several diseases, including cancer, making it a potential target for therapeutic strategies. The Wnt/β-catenin signaling pathway significantly impacts cancer by stabilizing β-catenin protein and promoting the transcription of its target genes.
View Article and Find Full Text PDFSmall molecule-driven JNK activation has been found to induce apoptosis and paraptosis in cancer cells. Herein pharmacological effects of synthetic oxazine (4aS, 7aS)-3-((4-(4‑chloro-2-fluorophenyl)piperazin-1-yl)methyl)-4-phenyl-4, 4a, 5, 6, 7, 7a-hexahydrocyclopenta[e] [1,2]oxazine (FPPO; BSO-07) on JNK-driven apoptosis and paraptosis has been demonstrated in human breast cancer (BC) MDA-MB231 and MCF-7 cells respectively. BSO-07 imparted significant cytotoxicity in BC cells, induced activation of JNK, and increased intracellular reactive oxygen species (ROS) levels.
View Article and Find Full Text PDFAberrant activation of the PI3K/AKT signaling axis along with the sustained phosphorylation of downstream BAD is associated with a poor outcome of TNBC. Herein, the phosphorylated to non-phosphorylated ratio of BAD, an effector of PI3K/AKT promoting cell survival, was observed to be correlated with worse clinicopathologic indicators of outcome, including higher grade, higher proliferative index and lymph node metastasis. The structural optimization of a previously reported inhibitor of BAD-Ser99 phosphorylation was therefore achieved to generate a small molecule inhibiting the phosphorylation of BAD at Ser99 with enhanced potency and improved oral bioavailability.
View Article and Find Full Text PDFHistone deacetylases (HDACs) are an attractive drug target for the treatment of human breast cancer (BC), and therefore, HDAC inhibitors (HDACis) are being used in preclinical and clinical studies. The need to understand the scope of the mode of action of HDACis, as well as the report of the co-crystal structure of HDAC6/SS-208 at the catalytic site, provoked us to develop an isoxazole-based lead structure called 4-(2-(((1-(3,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio) pyrimidin-4-yl) morpholine () and 1-(2-(((3-(p-tolyl) isoxazol-5-yl)methyl)thio) pyrimidin-4-yl) piperidin-4-one () that targets HDACs in human BC cells. We found that the compound or could inhibit the proliferation of BC cells with an IC value of 8.
View Article and Find Full Text PDFHuman epidermal growth factor receptor 2 (HER2)-positive breast cancer exhibits early relapses, poor prognoses, and high recurrence rates. Herein, a JNK-targeting compound has been developed that may be of utility in HER2-positive mammary carcinoma. The design of a pyrimidine-and coumarin-linked structure targeting JNK was explored and the lead structure PC-12 [4-(3-((2-((4-chlorobenzyl)thio) pyrimidin-4-yl)oxy)propoxy)-6-fluoro-2-chromen-2-one ()] was observed to selectively inhibit the proliferation of HER2-positive BC cells.
View Article and Find Full Text PDF