Publications by authors named "Shree P Pandey"

Article Synopsis
  • Mining poses a significant threat to vegetation and soil health in tropical forests, critically impacting the recovery of nematode communities essential for soil health during reforestation efforts.
  • The study investigates how root traits, soil properties, and microbial community diversities influence nematode recovery in three soil types: mined, reforested, and undisturbed.
  • Results show that nematode diversity in mined soils was significantly lower compared to undisturbed soils, but similar in reforested soils, indicating that reforestation practices can successfully restore nematode communities when appropriate tree species are used.
View Article and Find Full Text PDF

Plants interact with arbuscular mycorrhizal fungi (AMF) and in doing so, change transcript levels of many miRNAs and their targets. However, the identity of an Argonaute (AGO) that modulates this interaction remains unknown, including in Nicotiana attenuata. We examined how the silencing of NaAGO1/2/4/7/and 10 by RNAi influenced plant-competitive ability under low-P conditions when they interact with AMF.

View Article and Find Full Text PDF
Article Synopsis
  • miR390 is a conserved miRNA in plants that plays a role in growth and stress responses, but its specific functions in the ecological model species are not well understood and were investigated through a gain-of-function analysis.
  • Under normal conditions, plants over-expressing miR390 (Na-miR390) showed typical growth and development, but these plants demonstrated a reduced tolerance to herbivory, impacting their reproductive output by decreasing capsule production.
  • Na-miR390 influences the plant's response to herbivore attack by altering hormone levels, especially reducing auxin accumulation, which can be restored through external auxin treatments.
View Article and Find Full Text PDF

In a previous study, we identified a halotolerant rhizobacterium belonging to the genus Klebsiella (MBE02) that protected peanut seeds from Aspergillus flavus infection. Here, we investigated the mechanisms underlying the effect of MBE02 against A. flavus via untargeted metabolite profiling of peanut seeds treated with MBE02, A.

View Article and Find Full Text PDF

Argonautes (AGOs) associate with noncoding RNAs to regulate gene expression during development and stress adaptation. Their role in plant immunity against hemibiotrophic fungal infection remains poorly understood. Here, we explore the function of AGOs in the interaction of wild tobacco () with a naturally occurring hemibiotrophic pathogen, Among all AGOs, only transcripts of were elicited after fungal infection.

View Article and Find Full Text PDF

A halotolerant rhizobacteria, Klebsiella species (referred to MBE02), was identified that had a growth stimulation effect on peanut. To gain mechanistic insights into how molecular components were reprogrammed during the interaction of MBE02 and peanut roots, we performed deep RNA-sequencing. In total, 1260 genes were differentially expressed: 979 genes were up-regulated, whereas 281 were down-regulated by MBE02 treatment as compared to uninoculated controls.

View Article and Find Full Text PDF

microRNAs (miRNAs) are the central component of an important layer of regulation of gene expression at posttranscriptional level. In plants, miRNAs target the transcripts in a highly complementary sequence-dependent manner. Extensive research is being made to study genome-wide miRNA-mediated regulation of gene expression, which has resulted in the development of many tools for in silico prediction of miRNA targets.

View Article and Find Full Text PDF

Water stress severely reduces the production of wheat. Application of seaweed extracts have started to show promise in protecting plants from environmental stresses as they contain several biostimulants. However, the modes of action of these biostimulants are not clear.

View Article and Find Full Text PDF

Background: Nicotiana attenuata is an ecological model plant whose 2.57 Gb genome has recently been sequenced and assembled and for which miRNAs and their genomic locations have been identified. To understand how this plant's miRNAs are reconfigured during plant-arbuscular mycorrhizal fungal (AMF) interactions and whether hostplant calcium- and calmodulin dependent protein kinase (CCaMK) expression which regulates the AMF interaction also modulates miRNAs levels and regulation, we performed a large-scale miRNA analysis of this plant-AMF interaction.

View Article and Find Full Text PDF

Spot blotch, caused by the hemibiotropic fungus , is amongst the most damaging diseases of wheat. Still, natural variation in expression of biochemical traits that determine field resistance to spot blotch in wheat remain unaddressed. To understand how genotypic variations relate to metabolite profiles of the components of defense-signaling and the plant performance, as well as to discover novel sources of resistance against spot blotch, we have conducted field studies using 968 wheat genotypes at 5 geographical locations in South-Asia in 2 years.

View Article and Find Full Text PDF

In , specific RNA-directed RNA polymerase (RdR1) and the Dicer-like (DCL3 and DCL4) proteins are recruited during herbivore attack to mediate the regulation of defense responses. However, the identity and role(s) of Argonautes (AGOs) involved in herbivory remain unknown. Of the 11 AGOs in the genome, we silenced the expression of 10.

View Article and Find Full Text PDF

Comparative sequence analysis is widely used for the reconstruction of phylogeny and for understanding the evolutionary history of gene families. Here, we describe the methodologies to reconstruct the phylogenetic and evolutionary history of a gene family across genomes with a focus on the ARGONAUTE (AGO) family of proteins in plants. The method described here may easily be adapted for studying molecular evolution of a wide variety of gene families.

View Article and Find Full Text PDF

Background: is a filamentous fungus that causes spot blotch disease in cereals like wheat and has severe economic consequences. However, information on the identities and role of the cell wall-degrading enzymes (CWDE) in is very limited. Several fungi produce CWDE like glycosyl hydrolases (GHs) that help in host cell invasion.

View Article and Find Full Text PDF

Nicotine, the signature alkaloid of species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, (2.

View Article and Find Full Text PDF

Spot blotch disease, caused by Bipolaris sorokiniana, is an important threat to wheat, causing an annual loss of ~17%. Under epidemic conditions, these losses may be 100%, yet the molecular responses of wheat to spot blotch remain almost uncharacterized. Moreover, defense-related phytohormone signaling genes have been poorly characterized in wheat.

View Article and Find Full Text PDF

Argonautes (AGOs) are the effector proteins of the RNA-induced silencing (RISC) complex, formed during the phenomena of small-RNA mediated post-transcriptional gene silencing. AGOs are a large family of proteins; their number varies from a few (4 in Chlamydomonas reinhardtii) to many (18 in Oryza sativa) in plants. Genetics-guided analysis have demonstrated the roles of some of the AGOs during growth and development of plants.

View Article and Find Full Text PDF

Background: Argonaute (AGO) proteins form the core of the RNA-induced silencing complex, a central component of the smRNA machinery. Although reported from several plant species, little is known about their evolution. Moreover, these genes have not yet been cloned from the ecological model plant, Nicotiana attenuata, in which the smRNA machinery is known to mediate important ecological traits.

View Article and Find Full Text PDF

Background: Deep-sequencing has enabled the identification of large numbers of miRNAs and siRNAs, making the high-throughput target identification a main limiting factor in defining their function. In plants, several tools have been developed to predict targets, majority of them being trained on Arabidopsis datasets. An extensive and systematic evaluation has not been made for their suitability for predicting targets in species other than Arabidopsis.

View Article and Find Full Text PDF

Background: Conceptual parallels exist between bacterial and eukaryotic small-RNA (sRNA) pathways, yet relatively little is known about which protein may recognize and recruit bacterial sRNAs to interact with targets. In eukaryotes, Argonaute (AGO) proteins discharge such functions. The highly conserved bacterial YbeY RNase has structural similarities to the MID domain of AGOs.

View Article and Find Full Text PDF

The biosynthetic potential of endophytic fungi has gained impetus in recent times owing to the continual discovery of fungal endophytes capable of synthesizing plant compounds. However, the sustained production of the desired plant compounds has not yet been achieved using endophytes. It is thus imperative to investigate the diverse interactions that endophytes have with coexisting endophytes, host plants, insect pests, and other specific herbivores.

View Article and Find Full Text PDF

DICER-like (DCL) proteins produce small RNAs that silence genes involved in development and defenses against viruses and pathogens. Which DCLs participate in plant-herbivore interactions remains unstudied. We identified and stably silenced four distinct DCL genes by RNAi in Nicotiana attenuata (Torrey ex.

View Article and Find Full Text PDF

The SMc01113/YbeY protein, belonging to the UPF0054 family, is highly conserved in nearly every bacterium. However, the function of these proteins still remains elusive. Our results show that SMc01113/YbeY proteins share structural similarities with the MID domain of the Argonaute (AGO) proteins, and might similarly bind to a small-RNA (sRNA) seed, making a special interaction with the phosphate on the 5'-side of the seed, suggesting they may form a component of the bacterial sRNA pathway.

View Article and Find Full Text PDF

The two closely related Arabidopsis transcription factors, WRKY18 and WRKY40, play a major and partly redundant role in PAMP-triggered basal defense. We monitored the transcriptional reprogramming induced by the powdery mildew fungus, Golovinomyces orontii, during early stages of infection with respect to the role of WRKY18/40. Expression of >1300 Arabidopsis genes was differentially altered already 8 hours post infection (hpi), indicating rapid pre-penetration signaling between the pathogen and the host.

View Article and Find Full Text PDF

There exist commonalities between symbiotic Sinorhizobium meliloti and pathogenic Brucella bacteria in terms of extensive gene synteny and the requirements for intracellular survival in their respective hosts. The RNA chaperone Hfq is essential for virulence for several bacterial groups, including Brucella; however, its role in S. meliloti has not been investigated.

View Article and Find Full Text PDF