This study focuses on multivariate experimental design and statistical analysis to optimize the process of Olaparib . Quality by design (QbD) methodology was adopted for optimization of the Olaparib process consisting of three reaction steps: (1) amidation, (2) deprotection, and (3) acylation. Every chemical conversion was studied in isolation, employing risk assessment to identify key material attributes and key process parameters that may have the potential to impact the reaction.
View Article and Find Full Text PDFThis article describes an efficient process for the synthesis of abiraterone acetate by employing Quality by Design (QbD) principles and statistical design of experiments (DoE). It focuses on the identification of critical quality attributes (CQAs), the relationship between CQAs and material attributes (MAs), and critical process parameters (CPPs) for the synthesis of hydrazone, vinyl iodide intermediates, and final product. Risk assessment is employed to identify the probable critical factors involved in each chemical transformation.
View Article and Find Full Text PDF