Publications by authors named "Shradhya Singh"

In this work, we propose and simulate an ultrasensitive, label-free, and charge/dielectric modulated Si:HfO ferroelectric junctionless tunnel field effect transistor (FE-JL-TFET) based biosensor. The proposed sensing device employs a dual inverted-T cavity and uses ferroelectric gate stacking of Si-doped HfO, a key enabler of negative capacitance (NC) behavior. The two cavities are carved in gate-source underlap regions by a sacrificial etching technique to sense biomolecules such as streptavidin (2.

View Article and Find Full Text PDF

This work reports a biosensor based on the dual cavity dielectric modulated ferroelectric charge plasma Tunnel FET (FE-CP-TFET) with enhanced sensitivity. By incorporating underlap and dielectric modulation phenomena, ultra sensitive, and label-free detection of biomolecules is achieved. The cavity is carved underneath the source-gate dielectric for the immobilization of the biomolecules.

View Article and Find Full Text PDF

This research article reports the electrical detection of breast-cancer biomarker (C-erbB-2) in saliva/serum based on In1-xGaxAs/Si heterojunction dopingless tunnel FET (HJ-DL-TFET) biosensor for highly sensitive and real-time detection. The work takes into account the interface charge modulation effect in dopingless extended gate heterostructure TFET with embedded nanocavity biosensors for the precise, reliable, and fast detection of antigens present in the body fluids such as saliva in place of blood serum. The reported biosensor is numerically simulated in 2D using the SILVACO ATLAS exhaustive calibrated simulation framework.

View Article and Find Full Text PDF

The current research article reports the electrical detection of breast cancer cell lines (MDA-MB-231, Hs578T, T47D, and MCF-7) by deploying dopingless negative capacitance (NC) ferroelectric (FE) tunnel field-effect transistor (DL-FE-TFET). This device has a double dual metal gate and two nanocavities engraved underneath both gate electrodes for higher detection sensitivity. Our work reports the detection of nontumorigenic cell (MCF-10A) and breast cancer cell lines by combining the NC effect of FE material and dopingless technology synergistically.

View Article and Find Full Text PDF