Publications by authors named "Shrabanti Bhattacharya"

A mononuclear iron(II) complex, [(Tp)Fe(OTf)(CHCN)] (1) (Tp = hydrotris(3,5-diphenylpyrazol-1-yl)borate, OTf = triflate) has been isolated and its efficiency toward the aliphatic CC bond cleavage reaction of 1,2-diols with dioxygen has been investigated. Separate reactions between 1 and different 1,2-diolates form the corresponding iron(II)-diolate complexes in solution. While the iron(II) complex of the tetradentate TPA (tris(2-pyridylmethyl)amine) ligand is not efficient in affecting the CC cleavage of 1,2-diol with dioxygen, complex 1 displays catalytic activity to afford carboxylic acid and aldehyde.

View Article and Find Full Text PDF

Millions of tons of acetyl derivatives such as acetic acid and acetic anhydride are produced each year. These building blocks of chemical industry are elaborated into esters, amides, and eventually polymer materials, pharmaceuticals, and other consumer products. Most acetyls are produced industrially using homogeneous precious metal catalysts, principally rhodium and iridium complexes.

View Article and Find Full Text PDF

Oxidative C-C bond cleavage of 2-aminophenols mediated by transition metals and dioxygen is a topic of great interest. While the oxygenolytic C-C bond cleavage reaction relies on the inherent redox non-innocent property of 2-aminophenols, the metal complexes of 2-aminophenolates often undergo 1e-/2e- oxidation events (metal or ligand oxidation), instead of the direct addition of O2 for subsequent C-C bond cleavage. In this work, we report the isolation, characterization and dioxygen reactivity of a series of ternary iron(ii)-2-aminophenolate complexes [(TpPh,Me)FeII(X)], where X = 2-amino-4-tert-butylphenolate (4-tBu-HAP) (1); X = 2-amino-4,6-di-tert-butylphenolate (4,6-di-tBu-HAP) (2); X = 2-amino-4-nitrophenolate (4-NO2-HAP)(3); and X = 2-anilino-4,6-di-tert-butylphenolate (NH-Ph-4,6-di-tBu-HAP) (4) supported by a facial tridentate nitrogen donor ligand (TpPh,Me = hydrotris(3-phenyl-5-methylpyrazol-1-yl)borate).

View Article and Find Full Text PDF

Three new iron(II)-benzilate complexes [(N4Py)Fe (benzilate)]ClO (1), [(N4Py )Fe (benzilate)]ClO (2) and [(N4Py )Fe (benzilate)]ClO (3) of neutral pentadentate nitrogen donor ligands have been isolated and characterized to study their dioxygen reactivity. Single-crystal X-ray structures reveal a mononuclear six-coordinate iron(II) center in each case, where benzilate binds to the iron center in monodentate mode via one carboxylate oxygen. Introduction of methyl groups in the 6-positions of the pyridine rings makes the N4Py and N4Py ligand fields weaker compared to that of the parent N4Py ligand.

View Article and Find Full Text PDF

The ability of two iron(II) complexes, [(Tp)Fe(benzilate)] (1) and [(Tp)(Fe)(NPP)] (2) (Tp = hydrotris(3,5-diphenylpyrazol-1-yl)borate, NPP-H = α-isonitrosopropiophenone), of a monoanionic facial N3 ligand in the O-dependent oxidation of oximes is reported. The mononuclear complex 1 reacts with dioxygen to decarboxylate the iron-coordinated benzilate. The oximate-bridged dinuclear complex (2), which contains a high-spin (Tp)Fe unit and a low-spin iron(II)-oximate unit, activates dioxygen at the high-spin iron(II) center.

View Article and Find Full Text PDF

A mononuclear iron(II)-α-hydroxy acid complex [(Tp)Fe(benzilate)] (Tp = hydrotris(3-phenyl-5-methylpyrazol-1-yl)borate) of a facial tridentate ligand has been isolated and characterized to explore its catalytic efficiency for aerial oxidation of organic substrates. In the reaction between the iron(II)-benzilate complex and O, the metal-coordinated benzilate is stoichiometrically converted to benzophenone with concomitant reduction of dioxygen on the iron center. Based on the results from interception experiments and labeling studies, different iron-oxygen oxidants are proposed to generate in situ in the reaction pathway depending upon the absence or presence of an external additive (such as protic acid or Lewis acid).

View Article and Find Full Text PDF

A nucleophilic iron-oxygen oxidant, formed in situ in the reaction between an iron(II)-benzilate complex and O , oxidatively cleaves the aliphatic C-C bonds of α-hydroxy ketones. In the cleavage reaction, α-hydroxy ketones without any α-C-H bond afford a 1:1 mixture of carboxylic acid and ketone. Isotope labeling studies established that one of the oxygen atoms from dioxygen is incorporated into the carboxylic acid product.

View Article and Find Full Text PDF

Two mononuclear iron(ii)-phenylpyruvate complexes of monoanionic facial N3 ligands are reported to react with dioxygen to undergo two consecutive oxidative decarboxylation steps via an iron-mandelate complex mimicking the function of HMS and CloR.

View Article and Find Full Text PDF