In this work, we have developed an unconventional and highly enantioselective solvent-promoted Rauhut-Currier cyclization of enal-tethered cyclohexadienone by exploiting the reactivity of a simple Jørgensen-Hayashi catalyst through the merging of iminium and enamine activation. This asymmetric desymmetrization reaction has broad substrate scope in good yields with high to excellent enantioselectivity. DFT calculations suggest that the elimination of the alkoxy group is the rate-limiting step and that it proceeds through proton abstraction by solvent instead of a direct 1,3-proton shift.
View Article and Find Full Text PDFA chiral-template-driven intramolecular Diels-Alder reaction has been used to build the tricyclic core of kalihinols, a group of antimalarial marine natural products. The key starting materials are commercially available nerol and sulcatone.
View Article and Find Full Text PDFComputational investigations on the enantioselectivity observed in the allylation of cinnamaldehyde have been carried out using four closely related chiral platinum catalysts with ascorbic acid-based bisphosphinite ligands. Enantioselectivity depends on the substitution of hydrogen on the hydroxyl group by benzyl group(s) in the ascorbic acid framework. The key intermediate is assumed to be one, where both the aldehyde (via oxygen) and the η allyl group are coordinated to the metal center, and C-C bond formation between the terminal allylic carbon and carbonyl carbon is the rate-determining step.
View Article and Find Full Text PDFHitherto unknown catalytic enantioselective transformation of p-quinone diimides is achieved using chiral bifunctional organic molecules. Bifunctional thiourea compounds catalyze the Michael addition of cyanoacetates with excellent yields and enantioselectivities. The initially formed Michael adducts undergo cyclization to yield functionally rich, fused cyclic imidines bearing a quaternary benzylic chiral center.
View Article and Find Full Text PDFOxygenation of 1,5-cyclooctadiene (COD) is achieved on an iridium center using water as a reagent. A hydrogen-bonding interaction with an unbound nitrogen atom of the naphthyridine-based ligand architecture promotes nucleophilic attack of water to the metal-bound COD. Irida-oxetane and oxo-irida-allyl compounds are isolated, products which are normally accessed from reactions with H2O2 or O2.
View Article and Find Full Text PDFClosed-shell contacts between two copper(I) ions are expected to be repulsive. However, such contacts are quite frequent and are well documented. Crystallographic characterization of such contacts in unsupported and bridged multinuclear copper(I) complexes has repeatedly invited debates on the existence of cuprophilicity.
View Article and Find Full Text PDF