Increased thyroid cancer incidence has been one of the principal adverse health effects of the Chornobyl (Chernobyl) nuclear power plant accident. Accurate dose estimation is critical for assessing the radiation dose-response relationship. Current dosimetry estimates for individuals from the Chornobyl Tissue Bank (CTB) are based only on the limited information on their places of residence at the time of the accident and/or at the time of surgery for thyroid cancer.
View Article and Find Full Text PDFThis paper presents the results of research, development, and testing of magnetically insulated air diodes with replaceable graphite and stainless-steel tubular and coaxial cathodes of various configurations capable of generating directed bunches of runaway electrons. At the anode, the bunches have cross sections shaped as circles or rings with an outer diameter of 1-2 cm. The durations of the bunches, which carry currents of a few to tens of amperes, range from tens of picoseconds to 100 ps, and their charges range from tenths of a nanocoulomb to a few nanocoulombs.
View Article and Find Full Text PDFAlthough childhood exposure to radioactive iodine-131 (I-131) is an established risk factor for thyroid cancer, evidence for an association with thyroid nodules is less clear. The objective of this study is to evaluate the association between childhood I-131 exposure and prevalence of ultrasound-detected thyroid nodules overall and by nodule histology/cytology (neoplastic/suspicious/non-neoplastic), size (<10 mm/≥10 mm), and number (single/multiple). This is a cross-sectional study of radiation dose (mean = 0.
View Article and Find Full Text PDFThyroid doses from intake of radioiodine isotopes (131I, 132Te+132I, and 133I) and associated uncertainties were revised for the 13,204 Ukrainian-American cohort members exposed in childhood and adolescence to fallout from the Chornobyl nuclear power plant accident. The main changes related to the revision of the 131I thyroid activity measured in cohort members, the use of thyroid-mass values specific to the Ukrainian population, and the revision of the 131I ground deposition densities in Ukraine. Uncertainties in doses were assessed considering shared and unshared errors in the parameters of the dosimetry model.
View Article and Find Full Text PDFThis study revised the thyroid doses for 2582 Ukrainian in utero cohort members exposed to Chornobyl fallout (the Ukrainian in utero cohort) based on revision of: (i) 131I thyroid activity measured in the Ukrainian population, (ii) thyroid dosimetry system for entire Ukraine, and (iii) 131I ground deposition densities in Ukraine. Other major improvements included: (i) assessment of uncertainties in the thyroid doses considering shared and unshared error, and (ii) accounting for intake of short-lived radioisotopes of tellurium and iodine (132Te+132I and 133I). Intake of 131I was the major pathway for thyroid exposure, its median contribution to the thyroid dose was 97.
View Article and Find Full Text PDFTest results of high-voltage one- and four-channel radio-frequency (RF) generators based on the coaxial gyromagnetic ferrite-filled nonlinear transmission lines (NLTL) with external magnetic bias and RF-modulation frequency of a high-voltage pulse envelope of ∼8 GHz are presented. Electrical strength of oil-isolated NLTLs was tested in a compact version of one-channel generator based on the RADAN driver at a repetition rate of 100 pps. In case of a stationary setup, 5-ns pulse with -500 kV amplitude was split into 4 channels with individual NLTLs.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2019
Background: Children and adolescents exposed to radioactive iodine-131 (I-131) in fallout from the 1986 Chernobyl nuclear accident appear to be at increased risk of thyroid cancer and benign thyroid nodules. The prenatal period is also considered radiosensitive, and the fetal thyroid can absorb I-131 from the maternal circulation.
Objectives: We aimed to estimate the risk of malignant and benign thyroid nodules in individuals exposed prenatally.
Background: The issue of whether radiation-induced thyroid cancer is pathologically different from sporadic remains not fully answered. This study compared structural characteristics and invasive features of papillary thyroid carcinoma (PTC) in two age-matched groups: patients who were children (≤4 years old) at the time of the Chernobyl accident and who lived in three regions of Ukraine most contaminated by radioactive iodine I ("radiogenic" cancer), and those who lived in the same regions but who were born after 1987 and were not exposed to I ("sporadic" cancer). Further, the histopathologic features of PTC were analyzed in relation to age and individual I thyroid dose.
View Article and Find Full Text PDFIodine 131 (I-131), the principal component of nuclear fallout from the Chernobyl accident, concentrates in the thyroid gland and may pose risks to fetal development. To evaluate this, neonatal outcomes following the accident in April of 1986 were investigated in a cohort of 2582 in utero-exposed individuals from northern Ukraine for whom estimates of fetal thyroid I-131 dose were available. We carried out a retrospective review of cohort members' prenatal, delivery and newborn records.
View Article and Find Full Text PDFFor the first time, we demonstrate experimentally the possibility of Cherenkov superradiant generation with a phase imposed by an ultrashort seed microwave pulse. The phases of seed and initiated Ka-band microwave pulses were correlated with the accuracy of 0.5-0.
View Article and Find Full Text PDFThe synchronized operation of four gyromagnetic nonlinear transmission lines (NLTLs) was tested with a pulse repetition frequency up to 1 kHz during 1 s bursts. High voltage pulses with a duration of ∼5 ns from the solid state driver S-500 were split into four 48 Ω channels reaching about -200 kV in each channel with ∼10% variation in the amplitude. The maximum peak voltage at the NLTL output was within 220-235 kV with the maximum modulation depth of decaying oscillations up to 90% at the center frequency near 2.
View Article and Find Full Text PDFBackground: Serum thyroglobulin (Tg) is associated with the presence of thyroid disease and has been proposed as a biomarker of iodine status. Few studies have examined factors related to serum Tg in populations environmentally exposed to ionizing radiation and living in regions with endemic mild-to-moderate iodine deficiency.
Methods: We screened 10,430 individuals who were living in Ukraine and under 18 years of age at the time of the 1986 Chernobyl Nuclear Power Plant accident for thyroid disease from 2001 to 2003.
Test results of high-voltage subnanosecond pulse generator with a hybrid, two-stage energy compression scheme are presented. After the first compression section with a gas discharger, a ferrite-filled gyromagnetic nonlinear transmitting line is used. The offered technical solution makes it possible to increase the voltage pulse amplitude from -185 kV to -325 kV, with a 2-ns pulse rise time minimized down to ∼180 ps.
View Article and Find Full Text PDFStrong evidence for the statistical association between radiation exposure and disease has been produced for thyroid cancer by epidemiological studies after the Chernobyl accident. However, limitations of the epidemiological approach in order to explore health risks especially at low doses of radiation appear obvious. Statistical fluctuations due to small case numbers dominate the uncertainty of risk estimates.
View Article and Find Full Text PDFBackground: There are limited data on the histopathology of papillary thyroid carcinomas (PTCs) diagnosed in irradiated populations. We evaluated the associations between iodine-131 dose and the histopathological characteristics of post-Chernobyl PTCs, the changes in these characteristics over time, and their associations with selected somatic mutations.
Methods: This study included 115 PTCs diagnosed in a Ukrainian-American cohort (n=13,243) during prescreening and four successive thyroid screenings.
We demonstrate both theoretically and experimentally the possibility of correlating the phase of a Cherenkov superradiance (SR) pulse to the sharp edge of a current pulse, when spontaneous emission of the electron bunch edge serves as the seed for SR processes. By division of the driving voltage pulse across several parallel channels equipped with independent cathodes we can synchronize several SR sources to arrange a two-dimensional array. In the experiments carried out, coherent summation of radiation from four independent 8-mm wavelength band SR generators with peak power 600 MW results in the interference maximum of the directional diagram with an intensity that is equivalent to radiation from a single source with a power of 10 GW.
View Article and Find Full Text PDFThis paper presents the results of testing a high voltage pulse generator based on parallel gyromagnetic nonlinear transmission lines filled with saturable ferrite. The generator is capable of producing almost identical stable rf-modulated nanosecond high voltage pulses in each of the two, or four, parallel output channels. The output voltage amplitude in each channel can reach -285 or -180 kV, respectively, with a rf modulation depth of up to 60%.
View Article and Find Full Text PDFA previous study on papillary thyroid carcinomas (PTC) in young patients who were exposed to (131)iodine from the Chernobyl fallout revealed an exclusive gain of chromosomal band 7q11.23 in exposed cases compared to an age-matched control cohort. CLIP2, a gene located within band 7q11.
View Article and Find Full Text PDFThe Chernobyl nuclear power plant accident in Ukraine in 1986 led to widespread radioactive releases into the environment - primarily of radioiodines and cesium - heavily affecting the northern portions of the country, with settlement-averaged thyroid doses estimated to range from 10 mGy to more than 10 Gy. The increased risk of thyroid cancer among exposed children and adolescents is well established but the impact of radioactive contamination on the risk of other types of cancer is much less certain. To provide data on a public health issue of major importance, we have analyzed the incidence of non-thyroid cancers during the post-Chernobyl period in a well-defined cohort of 13,203 individuals who were <18 years of age at the time of the accident.
View Article and Find Full Text PDFWe describe the methods of registration and reconstruction of an envelope of explosive electron emission current from the edge of a cylindrical cathode, which provides a picosecond time reference of the emitted electron beam with a subnanosecond voltage front applied to the accelerating gap. Variation of the front steepness allows one to determine the beam onset time in the experiments, where a collector-type current probe can be used. The advanced method of dynamic time domain reflectometry provides exact data on electron beam current rise and track changes in the cathode emission from pulse to pulse with a precision of less than 10 ps.
View Article and Find Full Text PDFThe 1986 accident at the Chernobyl nuclear power plant remains the most serious nuclear accident in history, and excess thyroid cancers, particularly among those exposed to releases of iodine-131 remain the best-documented sequelae. Failure to take dose-measurement error into account can lead to bias in assessments of dose-response slope. Although risks in the Ukrainian-US thyroid screening study have been previously evaluated, errors in dose assessments have not been addressed hitherto.
View Article and Find Full Text PDF