Adipose tissue, which is conserved in higher eukaryotes, plays central roles in controlling the body's energy balance, including excess energy storage and energy expenditure during starvation. In adipogenesis, intranuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is a key molecule, and PPARγ agonists can promote adipogenesis. Many studies on the in vitro screening of PPARγ agonists with compounds derived from various materials have been reported; however, in vivo assays for quick examination of these feeding effects have not been established.
View Article and Find Full Text PDFJ Nutr Sci Vitaminol (Tokyo)
June 2017
Renal disease leads to perturbations in calcium and phosphate homeostasis and vitamin D metabolism. Dietary fructose aggravates chronic kidney disease (CKD), but whether it also worsens CKD-induced derangements in calcium and phosphate homeostasis is unknown. Here, we fed rats diets containing 60% glucose or fructose for 1 mo beginning 6 wk after 5/6 nephrectomy or sham operation.
View Article and Find Full Text PDFThe dietary phosphorus (P) requirement for large fish is difficult to estimate because of insensitivities of known P status indicators. We examined dietary P requirement of large rainbow trout (mean body weight 278 g) using recently identified P-responsive genes (mRNA abundances) as well as conventional serum P and bone P. Fish were fed six diets (varied P contents), and the tissues of intestine, pyloric caeca (PC), kidney, serum and bone were collected at varying time intervals.
View Article and Find Full Text PDFOxynticopeptic cells of fish stomach are thought to secrete less acid than the specialized parietal cells of mammalian stomach. Gastric acidity, however, has not been directly compared between fish and mammals. We therefore fed rainbow trout and rats the same meal, and found that the lowest postprandial pH of trout stomach was 2.
View Article and Find Full Text PDFExcess phosphorus (P) in aquaculture feeds contributes to the eutrophication of natural waters. While commercially available low-P (LP) fish feeds have been developed, there is uncertainty about their potential to reduce effluent P while maintaining fish growth relative to regular P (RP) feeds. We therefore simulated commercial aquaculture conditions and fed for 55 days rainbow trout (approximately 190 kg/raceway, n = 3 raceways/diet) RP (1.
View Article and Find Full Text PDFPhosphorus (P) is the limiting nutrient in freshwater primary production, and excessive levels cause premature eutrophication. P levels in aquaculture effluents are now tightly regulated. Increasing our understanding of waste P partitioning into soluble, particulate, and settleable fractions is important in the management of effluent P.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2004
Identification of phosphorus (P)-responsive genes is important in diagnosing the adequacy of dietary P intake well before clinical symptoms arise. The mRNA abundance of selected genes was determined in the intestine, pyloric ceca, and kidney of rainbow trout fed low-P (LP) or sufficient-P (SP) diet for 2, 5, and 20 days. The LP-to-SP ratio (LP/SP) of mRNA abundance was used to evaluate the difference in gene expression between LP and SP fish, and to compare the response with bone and serum P, which are conventional indicators of P status.
View Article and Find Full Text PDFThe anatomical proximity and embryological relationship of the pyloric caeca (PC) and small intestine of rainbow trout has led to the frequent assumption, on little evidence, that they have the same enzymes and transporters. In trout, the PC is an important absorptive organ for dietary nutrients, but its role in dietary P absorption has not been reported. We found that apical inorganic phosphate (Pi) transport in PC comprises carrier-mediated and diffusive components.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
October 2003
Mammalian type II sodium-phosphate cotransporter (NaPi-II) and inorganic phosphate uptake stimulator (PiUS) genes are upregulated by dietary phosphorus (P) restriction to increase intestinal and renal P transport, but little is known about NaPi-II and PiUS regulation in other vertebrates. We studied the 1). the tissue distribution and dietary regulation of NaPi-II, PiUS, and sodium-glucose cotransporter (SGLT1) mRNA and NaPi-II protein in juvenile rainbow trout (Oncorhynchus mykiss) and 2).
View Article and Find Full Text PDF