Publications by authors named "Show-An Chen"

The impact of additives on the nanoscale structures of spin-cast polymer composite films, particularly in polymer solar cells, is a topic of significant interest. This study focuses on the blend film comprising poly(thieno[3,4-]thio-phene--benzodi-thio-phene) (PTB7) and [6,6]-phenyl-C-butyric acid methyl ester (PCBM), exploring how additives like 1,8-di-iodo-octane (DIO) influence the film structures spin-cast from chloro-benzene solution. Combined results of specular X-ray and neutron reflectivity, grazing-incidence small- and wide-angle X-ray scattering (GISAXS and GIWAXS), and X-ray photoelectron spectroscopy indicate that DIO could significantly enhance the dispersion of PCBM and reduce composition inhomogeneity in the film.

View Article and Find Full Text PDF

Thermally activated delayed fluorescence (TADF)-based electroluminescence (EL) devices adopting a host/guest strategy in their emitting layer (EML) are capable of realizing high efficiency. However, TADF emitters composed of donor and acceptor moieties as guests dispersed in organic host materials containing a donor and/or an acceptor are subject to donor-acceptor (D-A) interactions. In addition, electron delocalization between neighboring emitter molecules could form different species of aggregates.

View Article and Find Full Text PDF

An exciplex, which is composed of electron donor and acceptor molecules and formed by intermolecular charge transfer, is an excited-state species that is able to emit light or transfer its energy to a lower-energy emitter. In reported exciplex-based organic light-emitting diodes (OLEDs), their working mechanism is to generate exciplexes either in the bulk emitting layer (bulk exciplex) or at its interface with an electron transport layer (interface exciplex); both types give promising device performance. Here, we propose a novel strategy of creating both types of exciplexes simultaneously (dual exciplexes) for the generation of more exciplexes for better device performance as indicated in the improved photoluminescence quantum yield (PLQY).

View Article and Find Full Text PDF

Developing an effective host for highly efficient full-color electroluminescence devices through a solution-process is still a challenge at present. Here, we use the σ-π conjugated polymer, poly(acridan grafted biphenyl germanium) P(DMAC-Ge), having the highest triplet energy () 2.86 eV among conjugated polymers as the host in sky-blue phosphorescence, TADFs (blue (B), green (G), and red (R)), and hybrid white (W) PLEDs.

View Article and Find Full Text PDF

Two pyridine-containing bipolar host materials with high triplet energy, 9,10-dihydro-9,9-dimethyl-10-(3-(6-(3-(9,9-dimethylacridin-10(9)-yl)phenyl)pyridin-2-yl)phenyl acridin (DDMACPy) and -(3-(6-(3-(diphenyl amino)phenyl)pyridin-2-yl)phenyl)--phenylbenzenamine (DTPAPy), are synthesized from the modification of the commonly adapted host material 2,6-bis(3-(9-carbazol-9-yl)phenyl)pyridine (DCzPPy). The highest occupied molecular orbital levels of DDMACPy (5.50 eV) and DTPAPy (5.

View Article and Find Full Text PDF

A series of σ-π-conjugated polymers composed of biphenyl and X atom as backbone repeat unit (where X is the group IV-A atom: carbon, silicon, germanium, or tin) grafted with two alkoxy-substituted biphenyls at the X atom as side chains are synthesized and their optoelectronic properties are studied systematically. We choose biphenyl rather than alkyl as the side chain because its frontier molecular orbital distributions are close to those of our previously reported σ-π-conjugated polymer grafted with transport moieties. The present σ-π polymers with various X atoms show significant differences in triplet energy () ranging from 2.

View Article and Find Full Text PDF

We propose the novel σ-π conjugated polymer poly(biphenyl germanium) grafted with two electron-donating acridan moieties on the Ge atom for use as the host material in a polymer light-emitting diode (PLED) with the sky-blue-emitting thermally activated delayed fluorescence (TADF) material DMAC-TRZ as the guest. Its high triplet energy (E ) of 2.86 eV is significantly higher than those of conventional π-π conjugated polymers (E =2.

View Article and Find Full Text PDF

Conjugated polyelectrolytes and their precursors as electron-injection layer (EIL) in polymer light-emitting diode have attracted extensive attention because they allow the use of environmentally stable high work function metals as cathode with efficient electron injection. Here, for the first time, we find that an undesirable green emission component (470-650 nm) in the electroluminescence spectra is observed during continuous operation of deep-blue emission β-phase poly(9,9-dioctyl-2,7-fluorene) (β-PFO) device upon introducing polyelectrolyte poly[9,9-bis(6'-(18-crown-6)methoxy)hexyl fluorene] chelating to potassium ion (PFCn6:K) as EIL. This phenomenon also happens to nonchelating PFCn6, poly[(9,9-bis(3'-( N, N-dimethylamino)propyl)-2,7-fluorene)- alt-2,7-(9,9-dioctylfluorene)], or even nonemissive poly[4-((18-crown-6)methoxy)methyl styrene] chelating to K (PSCn6:K).

View Article and Find Full Text PDF

It is well-known that short conjugation is needed to obtain a high triplet energy. Carbazole has 3 fused rings and yet it has a high triplet energy. In order to illuminate the reason behind this, we synthesized a range of carbazole derivatives with substitution at the 3,6-positions.

View Article and Find Full Text PDF

We use a mixed host, 2,6-bis[3-(carbazol-9-yl)phenyl]pyridine blended with 20 wt % tris(4-carbazoyl-9-ylphenyl)amine, to lower the hole-injection barrier, along with the bipolar and high-photoluminescence-quantum-yield (Φ= 84%), blue thermally activated delay fluorescence (TADF) material of 9,9-dimethyl-9,10-dihydroacridine-2,4,6-triphenyl-1,3,5-triazine (DMAC-TRZ) as a blue dopant to compose the emission layer for the fabrication of a TADF blue organic-light-emitting diode (BOLED). The device is highly efficient with the following performance parameters: maximum brightness (B) = 57586 cd/m, maximum current efficiency (CE) = 35.3 cd/A, maximum power efficiency (PE) = 21.

View Article and Find Full Text PDF

The efficiency of electrofluorescent polymer light-emitting diodes is determined by singlet exciton fraction (χ) formation and its value still remains controversial. In this work, χ in spiropolyfluorene (SPF) is determined by analyzing transient emission of phosphor-dopant probe. The χ is found to range from 50% to 76%, depending on applied voltage.

View Article and Find Full Text PDF

We demonstrated that introducing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate as a hole transport layer (HTL) on top of chlorinated indium tin oxide (Cl-ITO) anode can lead to a deeper highest occupied molecular orbital level of the HTL (promoting from 5.22 to 5.42 eV) due to the interfacial dipole imparted by the Cl-ITO, which allows barrier-free hole injection to the emitting layer with polyspirobifluorene doped with the yellow emitter rubrene and significantly prevents excitons quenching by residual chlorine radicals on the surface of Cl-ITO.

View Article and Find Full Text PDF

σ-π conjugated polymer strategy is proposed for designing electroluminescent host polymers with silylene-diphenylene as the backbone repeat unit giving a high triplet energy (E = 2.67 eV). By incorporation of high E (3.

View Article and Find Full Text PDF

The mesoscale aggregation properties of C60 in two distinct aromatic solvents (toluene and chlorobenzene) and a practical range of concentrations (c = 1-2 and c = 1-5 mg mL(-1), respectively) were systematically explored by static/dynamic light scattering (SLS/DLS), small angle X-ray scattering (SAXS), depolarized dynamic light scattering (DDLS), and cryogenic transmission electron microscopy (cryo-TEM) analyses. The central observations were as follows: (1) aggregate species of sizes in the range of several hundred nanometers have been independently revealed by SLS, DLS, and DDLS analyses for both solvent systems. (2) DDLS and cryo-TEM measurements further revealed that while C60 clusters are notably anisotropic (rod-like) in chlorobenzene, they are basically isotropic (spherical) in toluene.

View Article and Find Full Text PDF

A series of end-functionalized poly(3-hexylthiophene)s (P3HTs) were synthesized by end-capping with electron-deficient moieties (EDMs, oxadiazole (OXD) and triazole (TAZ)) to prevent the negative influence of bromine chain ends in the common uncapped P3HT in polymer solar cell (PSC) applications. On the basis of the electron-withdrawing capability of the planar OXD end groups, P3HT-end-OXD relative to the uncapped P3HT exhibits a raised absorption coefficient, extended exciton lifetime, and increased crystalline order in the blend with PCBM, leading to an effectual improvement in photovoltaic parameters. However, P3HT-end-TAZ has an opposite result even worse than that of the uncapped P3HT, arising from bulky TAZ end groups.

View Article and Find Full Text PDF

Using small angle X-ray scattering (SAXS), we elucidated the spatial organization of palladium (Pd) nanoparticles (NPs) in the polymer matrix of poly(2-vinylpyridine) (P2VP) and the nature of inter-nanoparticle interactions, where the NPs were synthesized in the presence of P2VP by the reduction of palladium acetylacetonate (Pd(acac)2). The experimental SAXS profiles were analysed on the basis of a hierarchical structure model considering the following two types of interparticle potential: (i) hard-core repulsion only (i.e.

View Article and Find Full Text PDF

We compared the crystallization rate of poly(3-hexylthiophene) (P3HT) in the film cast from the gel (called "gel-cast film") with that in the film cast from the liquid solution (called "solution-cast film") to understand the effect of solution structure on the structural development in the subsequently cast film of conjugated polymer. P3HT was found to form a homogeneous liquid solution with xylene at elevated temperature. When the freshly prepared semidilute solution was allowed to age at room temperature, the solution transformed into a gel in which a significant amount of nanowhiskers formed.

View Article and Find Full Text PDF

We present high efficiency and stable inverted PSCs (i-PSC) by employing sol-gel processed simultaneously doped ZnO by Indium and fullerene derivative (BisNPC60-OH) (denoted as InZnO-BisC60) film as cathode interlayer and PTB7-Th:PC71BM as the active layer (where PTB7-Th is a low bandgap polymer we proposed previously). This dual-doped ZnO, InZnO-BisC60, film shows dual and opposite gradient dopant concentration profiles, being rich in fullerene derivative at the cathode surface in contact with active layer and rich in In at the cathode surface in contact with the ITO surface. Such doping in ZnO not only gives improved surface conductivity by a factor of 270 (from 0.

View Article and Find Full Text PDF

Modification of a ZnO cathode by doping it with a hydroxyl-containing derivative - giving a ZnO-C60 cathode - provides a fullerene-derivative-rich surface and enhanced electron conduction. Inverted polymer solar cells with the ZnO-C60 cathode display markedly improved power conversion efficiency compared to those with a pristine ZnO cathode, especially when the active layer includes the low-bandgap polymer PTB7-Th.

View Article and Find Full Text PDF

We present a novel idea for overcoming the drawback of poor contact between the ZnO cathode and active layer interface in an inverted polymer solar cell (i-PSC), simply by incorporating an electron-acceptor self-assembled monolayer (SAM)--tetrafluoroterephthalic acid (TFTPA)--on the ZnO cathode surface to create an electron-poor surface of TFTPA on ZnO. The TFTPA molecules on ZnO are anchored on the ZnO surface by reacting its carboxyl groups with hydroxyl groups on the ZnO surface, such that the tetrafluoroterephthalate moieties lay on the surface with plane-on electron-poor benzene rings acting as positive charge centers. Upon coating a layer of fullerenes on top of it, the fullerene molecules can be physically adsorbed by Coulombic interaction and facilitate a promoted electron collection from the bulk.

View Article and Find Full Text PDF

Thermally stimulated current (TSC) technique is used to characterize traps in the regioregular poly(3-hexylthiophene) (rr-P3HT) and its blend with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). A hole trap in bulk rr-P3HT and an interfacial hole trap located at indium tin oxide (ITO)/rr-P3HT interface are revealed from the TSC measurement. Besides, molecular oxygen (O2) can form a deep electron trap with an onset of detrapping temperature at 225 K in rr-P3HT, in which O2 is located at the main chain region and the detrapping process is induced by chain motions under elevated temperature.

View Article and Find Full Text PDF

We demonstrated a promising route to enhance the performance of inverted organic photovoltaic (OPV) devices by the incorporation of CuGaSe2 (CGS) quantum dots (QDs) into the ZnO buffer layer of P3HT:PCBM-based devices. The modification of QDs provides better band alignment between the organic/cathode interface, improves ZnO crystal quality, and increases photon absorption, leading to more effective carrier transport/collection. By employing this energy-harvesting scheme, short-circuit current density, open-circuit voltage, and fill factor of the OPV device after CGS QD modification are improved by 9.

View Article and Find Full Text PDF

We investigated the gelation behavior of the blend of two light-emitting polyfluorenes, i.e., poly(9,9-dioctylfluorene-2,7-diyl) (PF(8)) and poly[9,9-di(2-ethylhexyl)-fluorenyl-2,7-diyl] (PF(2/6)), in solutions with methylcyclohexane (MCH).

View Article and Find Full Text PDF

We present a novel electron transport (ET) polymer composed of polyfluorene grafted with a K(+)-intercalated crown ether involving six oxygen atoms (PFCn6:K(+)) for bulk-heterojunction polymer solar cells (PSCs) with regioregular poly(3-hexylthiophene) (P3HT) as the donor and indene-C(60) bisadduct (ICBA) or indene-[6,6]-phenyl-C(61)-butyric acid methyl ester (IPCBM) as the acceptor in the active layer and with Al or Ca/Al as the cathode. A remarkable improvement in the power conversion efficiency (PCE) (measured in air) was observed upon insertion of this ET layer, which increased the PCE from 5.78 to 7.

View Article and Find Full Text PDF