Hereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia inherited as an autosomal dominant trait and caused by loss-of-function pathogenic variants in genes encoding proteins of the BMP signalling pathway. Up to 90% of disease-causal variants are observed in ENG and ACVRL1, with SMAD4 and GDF2 less frequently responsible for HHT. In adults, the most frequent HHT manifestations relate to iron deficiency and anaemia owing to recurrent epistaxis (nosebleeds) or bleeding from gastrointestinal telangiectases.
View Article and Find Full Text PDFPulmonary arteriovenous malformations (PAVMs) cause cerebral abscess and ischemic stroke due to paradoxical emboli, risks that are increasingly recognized. We report the evolving placement of thoracic surgery in multi-disciplinary team management of PAVMs that were sporadic or associated with hereditary hemorrhagic telangiectasia. From 1983 to 2006, all patients receiving elective treatment had embolization.
View Article and Find Full Text PDFEach human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.
View Article and Find Full Text PDFBackground: Disease biomarkers are often identified long after initiating pathologies, hampering mechanistic understanding and development of preventative strategies. We hypothesised that aberrant cellular responses to normally-encountered stresses may be relevant to later disease states.
Aim: To model two under-explored acute cellular stresses for blood-exposed cells, and cross-reference to known biomarkers of disease.
Human peripheral blood mononuclear cells (PBMCs) are used to examine biological processes and disease, when basal variability in cellular activation and splicing is described and unexplained. Using isolation systems that maintained buffy coat cells (PBMCs, platelets) in their own plasma, poly-A enriched RNA-sequencing (RNASeq) detected 42,720 Ensembl gene IDs, including >95% of the top 100 Genotype Tissue Expression Project (GTEx)-expressed genes in lung, colon, heart, skeletal muscle and liver, and 10/17 clinically-actionable genes listed by the Pharmacogenomics Knowledgebase. Transcriptome changes were defined after 1h treatment with 32°C hypothermia (hsp70 family member change), 10 μmol/L ferric citrate that had no discernible effect, and 100 μg/mL cycloheximide leading to induction of primary response (immediate early) genes including IL1B and TNF.
View Article and Find Full Text PDFFor monogenic diseases caused by pathogenic loss-of-function DNA variants, attention focuses on dysregulated gene-specific pathways, usually considering molecular subtypes together within causal genes. To better understand phenotypic variability in hereditary hemorrhagic telangiectasia (HHT), we subcategorized pathogenic DNA variants in ENG/endoglin, ACVRL1/ALK1, and SMAD4 if they generated premature termination codons (PTCs) subject to nonsense-mediated decay. In 3 patient cohorts, a PTC-based classification system explained some previously puzzling hemorrhage variability.
View Article and Find Full Text PDFHereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia inherited as an autosomal dominant trait, due to a single heterozygous loss-of-function variant, usually in (encoding activin receptor-like kinase 1 [ALK1]), (encoding endoglin [CD105]), or . In a consecutive single-centre series of 37 positive clinical genetic tests performed in 2021-2023, a skewed distribution pattern was noted, with 30 of 32 variants reported only once, but c.1231C>T (p.
View Article and Find Full Text PDFTo discover rare disease-gene associations, we developed a gene burden analytical framework and applied it to rare, protein-coding variants from whole genome sequencing of 35,008 cases with rare diseases and their family members recruited to the 100,000 Genomes Project (100KGP). Following triaging of the results, 88 novel associations were identified including 38 with existing experimental evidence. We have published the confirmation of one of these associations, hereditary ataxia with , and independent confirmatory evidence has recently been published for four more.
View Article and Find Full Text PDFHereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia that commonly results in bleeding but with frequent indications for therapeutic anticoagulation. Our aims were to advance the understanding of drug-specific intolerance and evaluate if there was an indication for pharmacogenomic testing. Genes encoding proteins involved in the absorption, distribution, metabolism, and excretion of warfarin, heparin, and direct oral anticoagulants (DOACs) apixaban, rivaroxaban, edoxaban, and dabigatran were identified and examined.
View Article and Find Full Text PDFWe read with interest the recent article by Killian et al. regarding the characteristics and treatment of brain vascular malformations (VMs) in children and adults with hereditary hemorrhagic telangiectasia (HHT) [..
View Article and Find Full Text PDFDespite whole-genome sequencing (WGS), many cases of single-gene disorders remain unsolved, impeding diagnosis and preventative care for people whose disease-causing variants escape detection. Since early WGS data analytic steps prioritize protein-coding sequences, to simultaneously prioritize variants in non-coding regions rich in transcribed and critical regulatory sequences, we developed GROFFFY, an analytic tool that integrates coordinates for regions with experimental evidence of functionality. Applied to WGS data from solved and unsolved hereditary hemorrhagic telangiectasia (HHT) recruits to the 100,000 Genomes Project, GROFFFY-based filtration reduced the mean number of variants/DNA from 4,867,167 to 21,486, without deleting disease-causal variants.
View Article and Find Full Text PDFHereditary haemorrhagic telangiectasia (HHT) can result in challenging anaemia and thrombosis phenotypes. Clinical presentations of HHT vary for relatives with identical casual mutations, suggesting other factors may modify severity. To examine objectively, we developed unsupervised machine learning algorithms to test whether haematological data at presentation could be categorised into sub-groupings and fitted to known biological factors.
View Article and Find Full Text PDFHereditary haemorrhagic telangiectasia (HHT) is a rare vascular multisystemic disease that leads to epistaxis, anaemia due to blood loss, and arteriovenous malformations (AVMs) in organs such as the lungs, liver and brain. HHT prevalence is estimated at 1/6000, i.e.
View Article and Find Full Text PDFThe abnormal vascular structures of hereditary hemorrhagic telangiectasia (HHT) often cause severe anemia due to recurrent hemorrhage, but HHT causal genes do not predict the severity of hematological complications. We tested for chance inheritance and clinical associations of rare deleterious variants in which loss-of-function causes bleeding or hemolytic disorders in the general population. In double-blinded analyses, all 104 patients with HHT from a single reference center recruited to the 100 000 Genomes Project were categorized on new MALO (more/as-expected/less/opposite) sub-phenotype severity scales, and whole genome sequencing data were tested for high impact variants in 75 HHT-independent genes encoding coagulation factors, or platelet, hemoglobin, erythrocyte enzyme, and erythrocyte membrane constituents.
View Article and Find Full Text PDFPulmonary arteriovenous malformations (PAVMs) result in preventable complications demanding specialty care. Underlying hereditary haemorrhagic telangiectasia (HHT) can be identified by genetic testing, if the diagnosis is considered. Retrospectively reviewing 152 unrelated adults with genetically confirmed HHT due to , or , we found that only 104/152 (68%) met a clinical diagnosis of HHT with three Curaçao criteria.
View Article and Find Full Text PDFHereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant multisystemic vascular dysplasia, characterized by arteriovenous malformations (AVMs), mucocutaneous telangiectasia and nosebleeds. HHT is caused by a heterozygous null allele in ACVRL1, ENG, or SMAD4, which encode proteins mediating bone morphogenetic protein (BMP) signaling. Several missense and stop-gain variants identified in GDF2 (encoding BMP9) have been reported to cause a vascular anomaly syndrome similar to HHT, however none of these patients met diagnostic criteria for HHT.
View Article and Find Full Text PDFThe potential of covert pulmonary arteriovenous malformations (PAVMs) to cause early onset, preventable ischemic strokes is not well known to neurologists. This is evident by their lack of mention in serial American Heart Association/American Stroke Association (AHA/ASA) Guidelines and the single case report biased literature of recent years. We performed PubMed and Cochrane database searches for major studies on ischemic stroke and PAVMs published from January 1, 1974, through April 3, 2021.
View Article and Find Full Text PDFHereditary haemorrhagic telangiectasia (HHT) is a complex, multisystemic vascular dysplasia affecting approximately 85,000 European Citizens. In 2016, eight founding centres operating within 6 countries, set up a working group dedicated to HHT within what became the European Reference Network on Rare Multisystemic Vascular Diseases. By launch, combined experience exceeded 10,000 HHT patients, and Chairs representing 7 separate specialties provided a median of 24 years' experience in HHT.
View Article and Find Full Text PDFRecent guidance suggested modified DNA variant pathogenicity assignments based on genome-wide allele rarity. Different a priori probabilities of pathogenicity operate where patients already have clinical diagnoses, and are found to have a very rare variant in a gene known to cause their disease, compared to predictive testing of a clinically unaffected individual. We tested new recommendations from the ClinGen Sequence Variant Interpretation Working Group for ClinVar-listed, loss-of-function variants meeting the very strong evidence of pathogenicity criterion [PVS1] in genes for 3 specific diseases where causal gene identification can modify clinical care of an individual- Von Willebrand disease, cystic fibrosis and hereditary haemorrhagic telangiectasia.
View Article and Find Full Text PDF