Publications by authors named "Shouzhen Jiang"

SODIUM SYMPORTER FAMILY PROTEIN 2 (BASS2) is localized within chloroplast membranes, facilitating the translocation of pyruvate and Na from the cytosol to the plastid, where pyruvate supports isopentenyl diphosphate (IPP) synthesis via the methylerythritol phosphate pathway in C3 plants. Nevertheless, the biological function of BASS2 in C4 plants has not been well defined. This study unveils a previously unidentified role of PvBASS2 in Na and pyruvate transport in seashore paspalum (Paspalum vaginatum), a halophytic C4 grass, indicating a specific cellular function within this plant species.

View Article and Find Full Text PDF

Actively controlling surface-enhanced Raman scattering (SERS) performance plays a vital role in highly sensitive detection or in situ monitoring. Nevertheless, it is still challenging to achieve further modulation of electromagnetic enhancement and chemical enhancement simultaneously in SERS detection. In this study, a silver nanocavity structure with graphene as a spacer layer is coupled with thermoelectric semiconductor P-type gallium nitride (GaN) to form an electric-field-induced SERS (E-SERS) for dual enhancement.

View Article and Find Full Text PDF
Article Synopsis
  • E-SERS has potential for flexible SERS regulation but has low enhancement effects and limited applications.
  • A new thermoelectrically induced SERS substrate (AGZ) was developed, boosting SERS signals by about 20 times through temperature gradients.
  • The AGZ platform can be used in a wearable mask to detect SARS-CoV-2 and microplastics, leveraging body heat and cold environments for improved signal detection.
View Article and Find Full Text PDF

Zinc finger proteins (ZFPs) are transcription factors involved in multiple cellular functions. We identified a C2H2 type ZFP (MtZPT2-2) in Medicago truncatula and demonstrated that it localizes to the nucleus and inhibits the transcription of 2 genes encoding high-affinity potassium transporters (MtHKT1;1 and MtHKT1;2). MtZPT2-2 transcripts were detected in stem, leaf, flower, seeds and roots, with the highest level in the xylem and phloem of roots and stems.

View Article and Find Full Text PDF

Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with AlO as the dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain mass-producible 3D SRES substrates.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring a flexible resonant cavity system made of composite materials for use in surface-enhanced Raman spectroscopy (SERS), which enhances the detection of molecules.
  • The system utilizes plasma coupling to create a resonant cavity structure that improves sensitivity and can be produced on a large scale, aimed at detecting substances like Rhodamine 6G and Crystalline violet.
  • Tests show that the sensor can detect very low concentrations of these molecules and maintain high stability and reproducibility, suggesting strong potential in food safety applications.
View Article and Find Full Text PDF

Multilayer hyperbolic metamaterial (HMM)-based SERS substrates have received special consideration because they accommodate various propagation modes such as surface plasmonic polaritons (SPP). However, the SPP modes are difficult to generate in HMM due to their weak electric field enhancement. In this article, we designed novel SERS substrates consisting of graphene-covered AgNPs and HMM.

View Article and Find Full Text PDF

Tilted fiber Bragg grating (TFBG) is a widespread approach for developing refractive index (RI) sensors. The unique optoelectronic properties exhibited by MXene are expected to enhance the performance of TFBG-SPR sensors. In this study, a TaC coating appropriate for sensing was obtained by optimizing the photo-deposition time, which addressed the challenge of preparing large areas of MXene.

View Article and Find Full Text PDF

We investigate the nonlinear optical harmonic generation behaviors near the bound-states in the continuum (BICs) in hybrid plasmonic-photonic structures. The hybrid structures are designed to consist of a plasmonic grating covered with a nonlinear dielectric waveguide layer, which support two distinct groups of BICs, i.e.

View Article and Find Full Text PDF

The electromagnetic fields distributed on the surface region of the nanostructure is very important to improve the performance of the sensor. Here, we proposed a highly sensitive sensor based on toroidal dipole (TD) governed by bound state in the continuum (BIC) in all-dielectric metasurface consisting of single non-coaxial core-shell cylinder nanostructure array. The excitation of TD resonance in a single nanostructure is still challenging.

View Article and Find Full Text PDF

In this paper, we designed a surface-enhanced Raman scattering (SERS) substrate for graphene/Ag nanoparticles (Ag NPs) bonded multilayer film (MLF) using the hybrid nanostructures composed of graphene and plasmonic metal components with significant plasmonic electrical effects and unique optical characteristics. This paper achieved the advantages of efficient utilization of electromagnetic field and reduction of fluorescence background based on the electromagnetic enhancement activity of Ag NPs and unique physical/chemical properties of graphene with zero gap structures. Au/AlO was stacked periodically to construct MLF.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) has long been an ultrasensitive technique for trace molecule detection. However, the development of a sensitive, stable, and reproducible SERS substrate is still a challenge for practical applications. Here, we demonstrate a cost-effective, centimeter-sized, and highly reproducible SERS substrate using the nanosphere lithography technique.

View Article and Find Full Text PDF

Driven by new two-dimensional materials, great changes and progress have taken place in the field of ultrafast photonics in recent years. Among them, the emerging single element two-dimensional materials (Xenes) have also received much attention due to their special physical and photoelectric properties including tunable broadband nonlinear saturable absorption, ultrafast carrier recovery rate, and ultrashort recovery time. In this review, the preparation methods of Xenes and various integration strategies are detailedly introduced at first.

View Article and Find Full Text PDF

Localized surface plasmon resonance (LSPR) optical fiber biosensing is an advanced and powerful label-free technique which gets great attention for its high sensitivity to refractive index change in surroundings. However, the pursuit of a higher sensitivity is still challenging and should be further investigated. In this paper, based on a monolayer graphene/gold nanoparticles (Gr/Au NPs) three-dimensional (3D) hybrid structure, we fabricated a D-shaped plastic optical fiber (D-POF) LSPR sensor using a facile two-step method.

View Article and Find Full Text PDF

We demonstrated a passively Q-switched Er:CaSrF laser with indium tin oxide nanowire arrays as an optical modulator in the mid-infrared region. In the Q-switched regime, the maximum output power of 58 mW with a slope efficiency of 18.3% was acquired.

View Article and Find Full Text PDF

We model optical bistability in all-dielectric guide-mode resonance grating (GMR) nanostructures working at quasi-bound states in the continuum (BICs). The complementary metal-oxide-semiconductor (CMOS) compatible material silicon nitride (SiN) is used for the design of nanostructures and simulations. The ultra-low threshold of input intensity in the feasible nanostructure for nanofabrication is obtained at the level of ~100 W/cm driven by quasi-BICs.

View Article and Find Full Text PDF

A high -factor of the nanocavity can effectively reduce the threshold of nanolasers. In this paper, a modified nanostructure composed of a silver grating on a low-index dielectric layer (LID) and a high-index dielectric layer (HID) was proposed to realize a nanolaser with a lower lasing threshold. The nanostructure supports a hybrid plasmonic waveguide mode with a very-narrow line-width that can be reduced to about 1.

View Article and Find Full Text PDF

The rhenium disulphide (ReS) nanocavity-based surface enhanced Raman scattering (SERS) substrates ware fabricated on the gold-modified silicon pyramid (PSi) by thermal evaporation technology and hydrothermal method. In this work, the ReS nanocavity was firstly combined with metal nanostructures in order to improve the SERS properties of ReS materials, and the SERS response of the composite structure exhibits excellent performance in sensitivity, uniformity and repeatability. Numerical simulation reveals the synergistic effect of the ReS nanocavity and the plasmon resonance generated by the metal nanostructures.

View Article and Find Full Text PDF

In the present study, a nanoparticle-multilayer metal film substrate was presented with silver nanoparticles (Ag NPs) assembled on a multilayer gold (Au) film by employing alumina (AlO) as a spacer. The SERS performance of the proposed structures was determined. It was suggested that the SERS effect was improved with the increase in the number of layers, which was saturated at four layers.

View Article and Find Full Text PDF

Hyperbolic metamaterials (HMMs), supporting surface plasmon polaritons (SPPs), and highly confined bulk plasmon polaritons (BPPs) possess promising potential for application as surface-enhanced Raman scattering (SERS) substrates. In the present study, a composite SERS substrate based on a multilayer HMM and gold-nanoparticle (Au-NP) layer was fabricated. A strong electromagnetic field was generated at the nanogaps of the Au NPs under the coupling between localized surface plasmon resonance (LSPR) and a BPP.

View Article and Find Full Text PDF

Recently, photochemical synthesis has attracted wide interest on in situ preparing the surface-enhanced Raman scattering (SERS) substrate with excellent performance, especially in a compact space and microfluidic channel. Herein, a facile, green and cost-effective approach to in situ photochemically synthesize silver nanoaggregates is demonstrated for SERS applications. By adjusting the photo-irradiation conditions, the morphologies and sizes of the silver nanoaggregates can be deliberately tailored.

View Article and Find Full Text PDF

In this paper, a localized surface-plasmon resonance (LSPR) biosensor, which uses a U-shaped multi-mode fiber (U-MMF), is introduced and investigated. It is modified with a complex of three-dimensional (3D) gold nanoparticles and multilayer graphene as spacer: n*(Au/G)@U-MMF, where n denotes the layer number of gold nanoparticles. The gold nanoparticles were synthesized by reducing chloroauric acid.

View Article and Find Full Text PDF

The weak plasmonic coupling intensity in an aluminum (Al) nanostructure has limited potential applications in excellent low-cost surface-enhanced Raman scattering (SERS) substrates and light harvesting. In this report, we aim to elevate the plasmonic coupling intensity by fabricating an Al nanoparticle (NP)-film system. In the system, the Al NP are fabricated directly on different Al film layers, and the nanoscale-thick alumina interlayer obtained between neighboring Al films acts as natural dielectric gaps.

View Article and Find Full Text PDF

Indium Tin Oxide nanowire arrays (ITO-NWAs), as epsilon-near-zero (ENZ) materials, exhibit a fast response time and a low saturable absorption intensity, which make them promising photoelectric materials. In this study, ITO-NWAs were successfully fabricated using a chemical vapor deposition (CVD) method, and the saturable absorption properties of this material were characterized in the near-infrared region. Further, passively Q-switched all-solid-state lasers were realized at wavelengths of 1.

View Article and Find Full Text PDF

A highly sensitive Au-graphene structure D-type fiber surface plasmon resonance biosensor is presented in this study to specifically detect biomolecules. The method of growing graphene is employed directly on the copper, and then a gold film of optimum thickness is sputtered, and the copper foil is etched to obtain the structure. This method makes the contact closer between the gold layer and the graphene layer to improve surface plasmon resonance performance.

View Article and Find Full Text PDF