An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFCiclopirox (CPX) modulates multiple cellular pathways involved in the growth of a variety of tumor cell types. However, the effects of CPX on colorectal cancer (CRC) and the underlying mechanisms for its antitumor activity remain unclear. Herein, we report that CPX exhibited strong antitumorigenic properties in CRC by inducing cell cycle arrest, repressing cell migration, and invasion by affecting N-cadherin, Snail, E-cadherin, MMP-2, and MMP-9 expression, and disruption of cellular bioenergetics contributed to CPX-associated inhibition of cell growth, migration, and invasion.
View Article and Find Full Text PDFDeferoxamine (DFO) was found to modulate multiple cellular pathways involved in the growth of breast cancer, hepatocellular carcinoma, lung cancer and bladder cancer. However, the effect of DFO on esophageal squamous cell carcinoma (ESCC) remains unclear. Here, we report that DFO-treated ESCC cells show strong anti-tumorigenic properties, such as inhibition of cell proliferation, induction of cell cycle arrest, and promotion of apoptosis.
View Article and Find Full Text PDFThe aim of the present study was to explore the effects of oxidative stress induced by CoCl and HO on the regulation of bioenergetics of esophageal squamous cell carcinoma (ESCC) cell line TE-1 and analyze its underlying mechanism. Western blot results showed that CoCl and HO treatment of TE-1 cells led to significant reduction in mitochondrial respiratory chain complex subunits expression and increasing intracellular reactive oxygen species (ROS) production. We further found that TE-1 cells treated with CoCl, a hypoxia-mimicking reagent, dramatically reduced the oxygen consumption rate (OCR) and increased the extracellular acidification rate (ECAR).
View Article and Find Full Text PDFPaclitaxel induces apoptosis in a variety of cancer cells. However, the mechanism of paclitaxel inducing apoptosis in human esophageal squamous cell carcinoma (ESCC) remains to be defined. In this study, we found that paclitaxel-induced apoptosis by increasing the relevant apoptosis protein expression and the release of cytochrome c via downregulation of signal transducer and activator of transcription 3 (STAT3) and phospho-STAT3 (Ser727).
View Article and Find Full Text PDF