Publications by authors named "Shouyi Yuan"

Polymer-based organic electrodes for rechargeable batteries are attractive due to their design flexibility, sustainability, and environmental compatibility. Unfortunately, waste management of conventional polymer materials typically involves incineration, which emits greenhouse gases. Consequently, degradable polymers should be ideal candidates for future green batteries.

View Article and Find Full Text PDF
Article Synopsis
  • The rise of wearable electronics and soft robotics has led to increased research into flexible batteries, which are adaptable for various shapes and sizes in devices like smart systems and sensors.
  • Unlike traditional lithium-ion batteries, flexible batteries consist of materials that can bend and stretch, requiring innovative designs for their components like electrodes and current collectors.
  • The review categorizes flexible batteries into different structures and types, discusses their configurations, and addresses both advancements and ongoing challenges, providing insights for future applications.
View Article and Find Full Text PDF

ConspectusLithium ion batteries (LIBs) with inorganic intercalation compounds as electrode active materials have become an indispensable part of human life. However, the rapid increase in their annual production raises concerns about limited mineral reserves and related environmental issues. Therefore, organic electrode materials (OEMs) for rechargeable batteries have once again come into the focus of researchers because of their design flexibility, sustainability, and environmental compatibility.

View Article and Find Full Text PDF

Batteries with a Li-metal anode have recently attracted extensive attention from the battery communities owing to their high energy density. However, severe dendrite growth hinders their practical applications. More seriously, when Li dendrites pierce the separators and trigger short circuit in a highly flammable organic electrolyte, the results would be catastrophic.

View Article and Find Full Text PDF

Given the limitations inherent in current intercalation-based Li-ion batteries, much research attention has focused on potential successors to Li-ion batteries such as lithium-sulfur (Li-S) batteries and lithium-oxygen (Li-O ) batteries. In order to realize the potential of these batteries, the use of metallic lithium as the anode is essential. However, there are severe safety hazards associated with the growth of Li dendrites, and the formation of "dead Li" during cycles leads to the inevitable loss of active Li, which in the end is undoubtedly detrimental to the actual energy density of Li-metal batteries.

View Article and Find Full Text PDF

We propose a carbonate-based electrolyte optimized with dual cations and ionic liquid for high-efficiency Li metal batteries with a high-voltage cathode. An average coulombic efficiency of Li deposition of 99.6% is achieved due to the salt-rich solid electrolyte interphase and Na guided uniform Li plating.

View Article and Find Full Text PDF

The development of Li metal anodes is hindered by the Li dendrites arising from the random deposition of Li metal during cycles. Hence, uniform deposition of Li during repeated cycles is crucial for the development of Li metal batteries. However, it is difficult to regulate Li deposition because of convection in the electrolyte.

View Article and Find Full Text PDF

Carbon/sulfur composites are attracting extensive attention because of their improved performances for Li-S batteries. However, the achievements are generally based on the low S-content in the composites and the low S-loading on the electrode. Herein, a leaf-like graphene oxide (GO), which includes an inherent carbon nanotube midrib in the GO plane, is synthesized for preparing GO/S composites.

View Article and Find Full Text PDF