Publications by authors named "Shouxing Xiang"

As training high-performance object detectors requires expensive bounding box annotations, recent methods resort to free-available image captions. However, detectors trained on caption supervision perform poorly because captions are usually noisy and cannot provide precise location information. To tackle this issue, we present a visual analysis method, which tightly integrates caption supervision with object detection to mutually enhance each other.

View Article and Find Full Text PDF

Given a scatterplot with tens of thousands of points or even more, a natural question is which sampling method should be used to create a small but "good" scatterplot for a better abstraction. We present the results of a user study that investigates the influence of different sampling strategies on multi-class scatterplots. The main goal of this study is to understand the capability of sampling methods in preserving the density, outliers, and overall shape of a scatterplot.

View Article and Find Full Text PDF