The rotation error is the most important quality characteristic index of a rotate vector (RV) reducer, and it is difficult to accurately optimize the design of a RV reducer, such as the Taguchi type, due to the many factors affecting the rotation error and the serious coupling effect among the factors. This paper analyzes the RV reducer rotation error and each factor based on the deep Gaussian processes (DeepGP) model and Sobol sensitivity analysis(SA) method. Firstly, using the optimal Latin hypercube sampling (OLHS) approach and the DeepGP model, a high-precision regression prediction model of the rotation error and each affecting factor was created.
View Article and Find Full Text PDFThis paper proposes a new method for predicting rotation error based on improved grey wolf-optimized support vector regression (IGWO-SVR), because the existing rotation error research methods cannot meet the production beat and product quality requirements of enterprises, because of the disadvantages of its being time-consuming and having poor calculation accuracy. First, the grey wolf algorithm is improved based on the optimal Latin hypercube sampling initialization, nonlinear convergence factor, and dynamic weights to improve its accuracy in optimizing the parameters of the support vector regression (SVR) model. Then, the IGWO-SVR prediction model between the manufacturing error of critical parts and the rotation error is established with the RV-40E reducer as a case.
View Article and Find Full Text PDF